Beispiel #1
0
def dmp_integrate(f, m, u, K):
    """
    Computes the indefinite integral of ``f`` in ``x_0`` in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> R.dmp_integrate(x + 2*y, 1)
    1/2*x**2 + 2*x*y
    >>> R.dmp_integrate(x + 2*y, 2)
    1/6*x**3 + x**2*y
    """
    if not u:
        return dup_integrate(f, m, K)

    if m <= 0 or dmp_zero_p(f, u):
        return f

    g, v = dmp_zeros(m, u - 1, K), u - 1

    for i, c in enumerate(reversed(f)):
        n = i + 1

        for j in range(1, m):
            n *= i + j + 1

        g.insert(0, dmp_quo_ground(c, K(n), v, K))

    return g
Beispiel #2
0
def dmp_add_term(f, c, i, u, K):
    """
    Add ``c(x_2..x_u)*x_0**i`` to ``f`` in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_add_term(x*y + 1, 2, 2)
    2*x**2 + x*y + 1
    """
    if not u:
        return dup_add_term(f, c, i, K)

    v = u - 1

    if dmp_zero_p(c, v):
        return f

    n = len(f)
    m = n - i - 1

    if i == n - 1:
        return dmp_strip([dmp_add(f[0], c, v, K)] + f[1:], u)
    else:
        if i >= n:
            return [c] + dmp_zeros(i - n, v, K) + f
        else:
            return f[:m] + [dmp_add(f[m], c, v, K)] + f[m + 1:]
Beispiel #3
0
def test_dmp_zeros():
    assert dmp_zeros(4, 0, ZZ) == [[], [], [], []]

    assert dmp_zeros(0, 2, ZZ) == []
    assert dmp_zeros(1, 2, ZZ) == [[[[]]]]
    assert dmp_zeros(2, 2, ZZ) == [[[[]]], [[[]]]]
    assert dmp_zeros(3, 2, ZZ) == [[[[]]], [[[]]], [[[]]]]

    assert dmp_zeros(3, -1, ZZ) == [0, 0, 0]
Beispiel #4
0
def _dmp_ff_trivial_gcd(f, g, u, K):
    """Handle trivial cases in GCD algorithm over a field. """
    zero_f = dmp_zero_p(f, u)
    zero_g = dmp_zero_p(g, u)

    if zero_f and zero_g:
        return tuple(dmp_zeros(3, u, K))
    elif zero_f:
        return (dmp_ground_monic(g, u, K), dmp_zero(u),
                dmp_ground(dmp_ground_LC(g, u, K), u))
    elif zero_g:
        return (dmp_ground_monic(f, u, K), dmp_ground(dmp_ground_LC(f, u, K),
                                                      u), dmp_zero(u))
    elif query('USE_SIMPLIFY_GCD'):
        return _dmp_simplify_gcd(f, g, u, K)
Beispiel #5
0
def _dmp_rr_trivial_gcd(f, g, u, K):
    """Handle trivial cases in GCD algorithm over a ring. """
    zero_f = dmp_zero_p(f, u)
    zero_g = dmp_zero_p(g, u)

    if zero_f and zero_g:
        return tuple(dmp_zeros(3, u, K))
    elif zero_f:
        if K.is_nonnegative(dmp_ground_LC(g, u, K)):
            return g, dmp_zero(u), dmp_one(u, K)
        else:
            return dmp_neg(g, u, K), dmp_zero(u), dmp_ground(-K.one, u)
    elif zero_g:
        if K.is_nonnegative(dmp_ground_LC(f, u, K)):
            return f, dmp_one(u, K), dmp_zero(u)
        else:
            return dmp_neg(f, u, K), dmp_ground(-K.one, u), dmp_zero(u)
    elif dmp_one_p(f, u, K) or dmp_one_p(g, u, K):
        return dmp_one(u, K), f, g
    elif query('USE_SIMPLIFY_GCD'):
        return _dmp_simplify_gcd(f, g, u, K)
Beispiel #6
0
def dmp_mul_term(f, c, i, u, K):
    """
    Multiply ``f`` by ``c(x_2..x_u)*x_0**i`` in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_mul_term(x**2*y + x, 3*y, 2)
    3*x**4*y**2 + 3*x**3*y
    """
    if not u:
        return dup_mul_term(f, c, i, K)

    v = u - 1

    if dmp_zero_p(f, u):
        return f
    if dmp_zero_p(c, v):
        return dmp_zero(u)
    else:
        return [ dmp_mul(cf, c, v, K) for cf in f ] + dmp_zeros(i, v, K)