Beispiel #1
0
def test_GroebnerBasis():
    assert str(groebner(
        [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"

    F = [x**2 - 3 * y - x + 1, y**2 - 2 * x + y - 1]

    assert str(groebner(F, order='grlex')) == \
        "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
    assert str(groebner(F, order='lex')) == \
        "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
Beispiel #2
0
def test_GroebnerBasis():
    assert str(groebner(
        [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"

    F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]

    assert str(groebner(F, order='grlex')) == \
        "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
    assert str(groebner(F, order='lex')) == \
        "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
Beispiel #3
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Examples
    ========

    >>> from diofant.polys import Options, Poly
    >>> from diofant.abc import x, y
    >>> from diofant.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(-sqrt(29)/2 + 7/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return

    if len(G) != 2:
        raise SolveFailed

    p, q = G
    x, y = opt.gens

    p = Poly(p, x, expand=False)
    q = q.ltrim(-1)

    p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
Beispiel #4
0
    def _solve_reduced_system(system, gens):
        """Recursively solves reduced polynomial systems. """

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            return

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError("only zero-dimensional systems "
                                      "supported (finite number of solutions)")

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if len(basis) == 1:
            return [ (zero,) for zero in zeros ]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero,))

        return solutions
Beispiel #5
0
def solve_triangulated(polys, *gens, **args):
    """
    Solve a polynomial system using Gianni-Kalkbrenner algorithm.

    The algorithm proceeds by computing one Groebner basis in the ground
    domain and then by iteratively computing polynomial factorizations in
    appropriately constructed algebraic extensions of the ground domain.

    Examples
    ========

    >>> from diofant.solvers.polysys import solve_triangulated
    >>> from diofant.abc import x, y, z

    >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

    >>> solve_triangulated(F, x, y, z)
    [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    References
    ==========

    1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
    Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
    Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989

    """
    G = groebner(polys, gens, polys=True)
    G = list(reversed(G))

    domain = args.get('domain')

    if domain is not None:
        for i, g in enumerate(G):
            G[i] = g.set_domain(domain)

    f, G = G[0].ltrim(-1), G[1:]
    dom = f.get_domain()

    zeros = f.ground_roots()
    solutions = set()

    for zero in zeros:
        solutions.add(((zero,), dom))

    var_seq = reversed(gens[:-1])
    vars_seq = postfixes(gens[1:])

    for var, vars in zip(var_seq, vars_seq):
        _solutions = set()

        for values, dom in solutions:
            H, mapping = [], list(zip(vars, values))

            for g in G:
                _vars = (var,) + vars

                if g.has_only_gens(*_vars) and g.degree(var) != 0:
                    h = g.ltrim(var).eval(dict(mapping))

                    if g.degree(var) == h.degree():
                        H.append(h)

            p = min(H, key=lambda h: h.degree())
            zeros = p.ground_roots()

            for zero in zeros:
                if not zero.is_Rational:
                    dom_zero = dom.algebraic_field(zero)
                else:
                    dom_zero = dom

                _solutions.add(((zero,) + values, dom_zero))

        solutions = _solutions

    solutions = list(solutions)

    for i, (solution, _) in enumerate(solutions):
        solutions[i] = solution

    return sorted(solutions, key=default_sort_key)