Beispiel #1
0
def test_vector_simplify():
    A, s, k, m = symbols('A, s, k, m')

    test1 = (1 / a + 1 / b) * i
    assert (test1 & i) != (a + b) / (a * b)
    test1 = simplify(test1)
    assert (test1 & i) == (a + b) / (a * b)
    assert test1.simplify() == simplify(test1)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * i
    test2 = simplify(test2)
    assert (test2 & i) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * a - 2 * (2 + 2 * a)) / (2 + 2 * a)) * i
    test3 = simplify(test3)
    assert (test3 & i) == 0

    test4 = ((-4 * a * b**2 - 2 * b**3 - 2 * a**2 * b) / (a + b)**2) * i
    test4 = simplify(test4)
    assert (test4 & i) == -2 * b

    v = (sin(a)+cos(a))**2*i - j
    assert trigsimp(v) == (2*sin(a + pi/4)**2)*i + (-1)*j
    assert trigsimp(v) == v.trigsimp()

    assert simplify(Vector.zero) == Vector.zero
Beispiel #2
0
def test_vector_simplify():
    A, s, k, m = symbols('A, s, k, m')

    test1 = (1 / a + 1 / b) * i
    assert (test1 & i) != (a + b) / (a * b)
    test1 = simplify(test1)
    assert (test1 & i) == (a + b) / (a * b)
    assert test1.simplify() == simplify(test1)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * i
    test2 = simplify(test2)
    assert (test2 & i) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * a - 2 * (2 + 2 * a)) / (2 + 2 * a)) * i
    test3 = simplify(test3)
    assert (test3 & i) == 0

    test4 = ((-4 * a * b**2 - 2 * b**3 - 2 * a**2 * b) / (a + b)**2) * i
    test4 = simplify(test4)
    assert (test4 & i) == -2 * b

    v = (sin(a)+cos(a))**2*i - j
    assert trigsimp(v) == (2*sin(a + pi/4)**2)*i + (-1)*j
    assert trigsimp(v) == v.trigsimp()

    assert simplify(Vector.zero) == Vector.zero
Beispiel #3
0
def test_R2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', extended_real=True)
    point_r = R2_r.point([x0, y0])
    point_p = R2_p.point([r0, theta0])

    # r**2 = x**2 + y**2
    assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0
    assert trigsimp((R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p)) == 0
    assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2 * r0

    # polar->rect->polar == Id
    a, b = symbols('a b', positive=True)
    m = Matrix([[a], [b]])
    # TODO assert m == R2_r.coord_tuple_transform_to(R2_p, R2_p.coord_tuple_transform_to(R2_r, [a, b])).applyfunc(simplify)
    assert m == R2_p.coord_tuple_transform_to(
        R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
Beispiel #4
0
def test_R2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', extended_real=True)
    point_r = R2_r.point([x0, y0])
    point_p = R2_p.point([r0, theta0])

    # r**2 = x**2 + y**2
    assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0
    assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0
    assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0

    # polar->rect->polar == Id
    a, b = symbols('a b', positive=True)
    m = Matrix([[a], [b]])
    # TODO assert m == R2_r.coord_tuple_transform_to(R2_p, R2_p.coord_tuple_transform_to(R2_r, [a, b])).applyfunc(simplify)
    assert m == R2_p.coord_tuple_transform_to(
        R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
Beispiel #5
0
 def _eval_rewrite_as_cos(self, n, m, theta, phi):
     # This method can be expensive due to extensive use of simplification!
     from diofant.simplify import simplify, trigsimp
     # TODO: Make sure n \in N
     # TODO: Assert |m| <= n ortherwise we should return 0
     term = simplify(self.expand(func=True))
     # We can do this because of the range of theta
     term = term.xreplace({Abs(sin(theta)): sin(theta)})
     return simplify(trigsimp(term))
Beispiel #6
0
    def __contains__(self, o):
        if isinstance(o, Point):
            x = Dummy('x', extended_real=True)
            y = Dummy('y', extended_real=True)

            res = self.equation(x, y).subs({x: o.x, y: o.y})
            return trigsimp(simplify(res)) is S.Zero
        elif isinstance(o, Ellipse):
            return self == o
        return False
Beispiel #7
0
def test_functional_diffgeom_ch4():
    x0, y0, theta0 = symbols('x0, y0, theta0', extended_real=True)
    x, y, r, theta = symbols('x, y, r, theta', extended_real=True)
    r0 = symbols('r0', positive=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])

    f_field = b1(R2.x, R2.y) * R2.dx + b2(R2.x, R2.y) * R2.dy
    assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
    assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)

    s_field_r = f(R2.x, R2.y)
    df = Differential(s_field_r)
    assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
    assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)

    s_field_p = f(R2.r, R2.theta)
    df = Differential(s_field_p)
    assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
        cos(theta0) * Derivative(f(r0, theta0), r0) -
        sin(theta0) * Derivative(f(r0, theta0), theta0) / r0)
    assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
        sin(theta0) * Derivative(f(r0, theta0), r0) +
        cos(theta0) * Derivative(f(r0, theta0), theta0) / r0)

    assert R2.dx(R2.e_x).rcall(p_r) == 1
    assert R2.dx(R2.e_x) == 1
    assert R2.dx(R2.e_y).rcall(p_r) == 0
    assert R2.dx(R2.e_y) == 0

    circ = -R2.y * R2.e_x + R2.x * R2.e_y
    assert R2.dx(circ).rcall(p_r).doit() == -y0
    assert R2.dy(circ).rcall(p_r) == x0
    assert R2.dr(circ).rcall(p_r) == 0
    assert simplify(R2.dtheta(circ).rcall(p_r)) == 1

    assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
def test_functional_diffgeom_ch4():
    x0, y0, theta0 = symbols('x0, y0, theta0', extended_real=True)
    x, y, r, theta = symbols('x, y, r, theta', extended_real=True)
    r0 = symbols('r0', positive=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])

    f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy
    assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
    assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)

    s_field_r = f(R2.x, R2.y)
    df = Differential(s_field_r)
    assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
    assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)

    s_field_p = f(R2.r, R2.theta)
    df = Differential(s_field_p)
    assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
        cos(theta0)*Derivative(f(r0, theta0), r0) -
        sin(theta0)*Derivative(f(r0, theta0), theta0)/r0)
    assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
        sin(theta0)*Derivative(f(r0, theta0), r0) +
        cos(theta0)*Derivative(f(r0, theta0), theta0)/r0)

    assert R2.dx(R2.e_x).rcall(p_r) == 1
    assert R2.dx(R2.e_x) == 1
    assert R2.dx(R2.e_y).rcall(p_r) == 0
    assert R2.dx(R2.e_y) == 0

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    assert R2.dx(circ).rcall(p_r).doit() == -y0
    assert R2.dy(circ).rcall(p_r) == x0
    assert R2.dr(circ).rcall(p_r) == 0
    assert simplify(R2.dtheta(circ).rcall(p_r)) == 1

    assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0