Beispiel #1
0
def test_rewrite():
    assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - Rational(1, 2), z)
    assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - Rational(1, 2), z)
    assert besseli(n, z).rewrite(besselj) == \
        exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
    assert besselj(n, z).rewrite(besseli) == \
        exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
    assert besselj(2, z).rewrite(bessely) == besselj(2, z)
    assert bessely(2, z).rewrite(besselj) == bessely(2, z)
    assert bessely(2, z).rewrite(besseli) == bessely(2, z)
    assert besselk(2, z).rewrite(besseli) == besselk(2, z)
    assert besselk(2, z).rewrite(besselj) == besselk(2, z)
    assert besselk(2, z).rewrite(bessely) == besselk(2, z)

    nu = randcplx()

    assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
    assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)

    assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
    assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)

    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)

    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
Beispiel #2
0
def test_hyper():
    pytest.raises(TypeError, lambda: hyper(1, 2, z))

    assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z)

    h = hyper((1, 2), (3, 4, 5), z)
    assert h.ap == Tuple(1, 2)
    assert h.bq == Tuple(3, 4, 5)
    assert h.argument == z
    assert h.is_commutative is True

    # just a few checks to make sure that all arguments go where they should
    assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
    assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)

    # differentiation
    h = hyper(
        (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
    assert td(h, z)

    a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
    assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
        a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z)

    # differentiation wrt parameters is not supported
    assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z)

    # hyper is unbranched wrt parameters
    assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \
        hyper([z], [k], polar_lift(x))

    assert hyper((1, 2, 3), [3, 4], 1).is_number
    assert not hyper((1, 2, 3), [3, x], 1).is_number
Beispiel #3
0
def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        c = uniform(1, 5)
        expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
        return abs(expr - expr2).evalf(strict=False) < 1e-10

    nu = Symbol('nu')
    assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
    assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Beispiel #4
0
def test_sympyissue_7173():
    assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
         And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
                pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
                pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2,
                          Abs(periodic_argument(a, oo)) <= pi/2)))
Beispiel #5
0
def test_principal_branch():
    p = Symbol('p', positive=True)
    neg = Symbol('x', negative=True)

    assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
    assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
    assert principal_branch(2*x, p) == 2*principal_branch(x, p)
    assert principal_branch(1, pi) == exp_polar(0)
    assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
    assert principal_branch(-1, pi) == exp_polar(0)
    assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
        principal_branch(exp_polar(I*pi)*x, 2*pi)
    assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)

    assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)

    # test argument sanitization
    assert isinstance(principal_branch(x, I), principal_branch)
    assert isinstance(principal_branch(x, -4), principal_branch)
    assert isinstance(principal_branch(x, -oo), principal_branch)
    assert isinstance(principal_branch(x, zoo), principal_branch)

    assert (principal_branch((4 + I)**2, 2*pi).evalf() ==
            principal_branch((4 + I)**2, 2*pi))
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert (expint(n, x*exp_polar(2*I*pi)) ==
            expint(n, x*exp_polar(2*I*pi), evaluate=False))

    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert (expint(2, x, evaluate=False).rewrite(Shi) ==
            expint(2, x, evaluate=False))
    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
    assert (expint(x, x).series(x, x0=1, n=2) ==
            expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)),
                                             ((0, 0, 0), ()), 1) - 1/E) +
            O((x - 1)**2, (x, 1)))

    pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
Beispiel #7
0
def test_polarify():
    z = Symbol('z', polar=True)
    f = Function('f')
    ES = {}

    assert polarify(-1) == (polar_lift(-1), ES)
    assert polarify(1 + I) == (polar_lift(1 + I), ES)

    assert polarify(exp(x), subs=False) == exp(x)
    assert polarify(1 + x, subs=False) == 1 + x
    assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x

    assert polarify(x, lift=True) == polar_lift(x)
    assert polarify(z, lift=True) == z
    assert polarify(f(x), lift=True) == f(polar_lift(x))
    assert polarify(1 + x, lift=True) == polar_lift(1 + x)
    assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))

    newex, subs = polarify(f(x) + z)
    assert newex.subs(subs) == f(x) + z

    mu = Symbol("mu")
    sigma = Symbol("sigma", positive=True)

    # Make sure polarify(lift=True) doesn't try to lift the integration
    # variable
    assert polarify(
        Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
                 (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi) *
                                                       exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x) **
                                                           (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
Beispiel #8
0
def test_polarify():
    z = Symbol('z', polar=True)
    f = Function('f')
    ES = {}

    assert polarify(-1) == (polar_lift(-1), ES)
    assert polarify(1 + I) == (polar_lift(1 + I), ES)

    assert polarify(exp(x), subs=False) == exp(x)
    assert polarify(1 + x, subs=False) == 1 + x
    assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x

    assert polarify(x, lift=True) == polar_lift(x)
    assert polarify(z, lift=True) == z
    assert polarify(f(x), lift=True) == f(polar_lift(x))
    assert polarify(1 + x, lift=True) == polar_lift(1 + x)
    assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))

    newex, subs = polarify(f(x) + z)
    assert newex.subs(subs) == f(x) + z

    mu = Symbol('mu')
    sigma = Symbol('sigma', positive=True)

    # Make sure polarify(lift=True) doesn't try to lift the integration
    # variable
    assert polarify(
        Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
                 (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi) *
                                                       exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x) **
                                                           (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
Beispiel #9
0
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)

    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
Beispiel #10
0
def test_bugs():
    from diofant import polar_lift, re

    assert abs(re((1 + I)**2)) < 1e-15

    # anything that evalf's to 0 will do in place of polar_lift
    assert abs(polar_lift(0)).n() == 0
Beispiel #11
0
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z)**2)
    assert myexpand(lerchphi(z, -3, a), None)

    # polylog reduction
    assert myexpand(
        lerchphi(z, s, Rational(1, 2)),
        2**(s - 1) * (polylog(s, sqrt(z)) / sqrt(z) -
                      polylog(s,
                              polar_lift(-1) * sqrt(z)) / sqrt(z)))
    assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z**2)
    assert myexpand(lerchphi(z, s, Rational(3, 2)), None)
    assert myexpand(lerchphi(z, s, Rational(7, 3)), None)
    assert myexpand(lerchphi(z, s, -Rational(1, 3)), None)
    assert myexpand(lerchphi(z, s, -Rational(5, 2)), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a),
                    2**(-s) * zeta(s, a / 2) - 2**(-s) * zeta(s, (a + 1) / 2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(2 * I * pi / 5), s, a), None)
Beispiel #12
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
Beispiel #13
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
Beispiel #14
0
def test_periodic_argument():
    p = Symbol('p', positive=True)

    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)

    assert unbranched_argument(principal_branch(x, pi)) == \
        periodic_argument(x, pi)

    assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
    assert periodic_argument(polar_lift(2 + I), 2*pi) == \
        periodic_argument(2 + I, 2*pi)
    assert periodic_argument(polar_lift(2 + I), 3*pi) == \
        periodic_argument(2 + I, 3*pi)
    assert periodic_argument(polar_lift(2 + I), pi) == \
        periodic_argument(polar_lift(2 + I), pi)

    assert unbranched_argument(polar_lift(1 + I)) == pi/4
    assert periodic_argument(2*p, p) == periodic_argument(p, p)
    assert periodic_argument(pi*p, p) == periodic_argument(p, p)

    assert Abs(polar_lift(1 + I)) == Abs(1 + I)

    assert periodic_argument(x, pi).is_real is True
    assert periodic_argument(x, oo, evaluate=False).is_real is None
Beispiel #15
0
def test_periodic_argument():
    p = Symbol('p', positive=True)

    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)

    assert unbranched_argument(principal_branch(x, pi)) == \
        periodic_argument(x, pi)

    assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
    assert periodic_argument(polar_lift(2 + I), 2*pi) == \
        periodic_argument(2 + I, 2*pi)
    assert periodic_argument(polar_lift(2 + I), 3*pi) == \
        periodic_argument(2 + I, 3*pi)
    assert periodic_argument(polar_lift(2 + I), pi) == \
        periodic_argument(polar_lift(2 + I), pi)

    assert unbranched_argument(polar_lift(1 + I)) == pi/4
    assert periodic_argument(2*p, p) == periodic_argument(p, p)
    assert periodic_argument(pi*p, p) == periodic_argument(p, p)

    assert Abs(polar_lift(1 + I)) == Abs(1 + I)

    assert periodic_argument(x, pi).is_real is True
    assert periodic_argument(x, oo, evaluate=False).is_real is None
Beispiel #16
0
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
        x**3/18 + x**4/96 + x**5/600 + O(x**6)
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1)*pos) - I*pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I*pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x)/x, x)
    assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
                -uppergamma(0, x*polar_lift(-1)) - I*pi, x)
    assert mytn(Ei(x), Ei(x).rewrite(expint),
                -expint(1, x*polar_lift(-1)) - I*pi, x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
    assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
                Ci(x) + I*Si(x) + I*pi/2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2*log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2/4 +
                               x**3/18 + x**4/96 + x**5/600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E*x + E*x**3/6 - E*x**4/12 +
                                   3*E*x**5/40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2 / 4 + x**3 / 18 +
                               x**4 / 96 + x**5 / 600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E * x + E * x**3 / 6 -
                                   E * x**4 / 12 + 3 * E * x**5 / 40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
Beispiel #19
0
def test_unpolarify():
    p = exp_polar(7*I) + 1
    u = exp(7*I) + 1

    assert unpolarify(1) == 1
    assert unpolarify(p) == u
    assert unpolarify(p**2) == u**2
    assert unpolarify(p**x) == p**x
    assert unpolarify(p*x) == u*x
    assert unpolarify(p + x) == u + x
    assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))

    # Test reduction to principal branch 2*pi.
    t = principal_branch(x, 2*pi)
    assert unpolarify(t) == x
    assert unpolarify(sqrt(t)) == sqrt(t)

    # Test exponents_only.
    assert unpolarify(p**p, exponents_only=True) == p**u
    assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)

    # Test functions.
    assert unpolarify(sin(p)) == sin(u)
    assert unpolarify(tanh(p)) == tanh(u)
    assert unpolarify(gamma(p)) == gamma(u)
    assert unpolarify(erf(p)) == erf(u)
    assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)

    assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
        uppergamma(sin(u), sin(u + 1))
    assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
        uppergamma(0, 2)

    assert unpolarify(Eq(p, 0)) == Eq(u, 0)
    assert unpolarify(Ne(p, 0)) == Ne(u, 0)
    assert unpolarify(polar_lift(x) > 0) == (x > 0)

    # Test bools
    assert unpolarify(True) is True
Beispiel #20
0
def test_unpolarify():
    p = exp_polar(7*I) + 1
    u = exp(7*I) + 1

    assert unpolarify(1) == 1
    assert unpolarify(p) == u
    assert unpolarify(p**2) == u**2
    assert unpolarify(p**x) == p**x
    assert unpolarify(p*x) == u*x
    assert unpolarify(p + x) == u + x
    assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))

    # Test reduction to principal branch 2*pi.
    t = principal_branch(x, 2*pi)
    assert unpolarify(t) == x
    assert unpolarify(sqrt(t)) == sqrt(t)

    # Test exponents_only.
    assert unpolarify(p**p, exponents_only=True) == p**u
    assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)

    # Test functions.
    assert unpolarify(sin(p)) == sin(u)
    assert unpolarify(tanh(p)) == tanh(u)
    assert unpolarify(gamma(p)) == gamma(u)
    assert unpolarify(erf(p)) == erf(u)
    assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)

    assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
        uppergamma(sin(u), sin(u + 1))
    assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
        uppergamma(0, 2)

    assert unpolarify(Eq(p, 0)) == Eq(u, 0)
    assert unpolarify(Ne(p, 0)) == Ne(u, 0)
    assert unpolarify(polar_lift(x) > 0) == (x > 0)

    # Test bools
    assert unpolarify(True) is True
Beispiel #21
0
def test_principal_branch():
    p = Symbol('p', positive=True)
    neg = Symbol('x', negative=True)

    assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
    assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
    assert principal_branch(2 * x, p) == 2 * principal_branch(x, p)
    assert principal_branch(1, pi) == exp_polar(0)
    assert principal_branch(-1, 2 * pi) == exp_polar(I * pi)
    assert principal_branch(-1, pi) == exp_polar(0)
    assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
        principal_branch(exp_polar(I*pi)*x, 2*pi)
    assert principal_branch(neg * exp_polar(pi * I),
                            2 * pi) == neg * exp_polar(-I * pi)

    assert N_equals(principal_branch((1 + I)**2, 2 * pi), 2 * I)
    assert N_equals(principal_branch((1 + I)**2, 3 * pi), 2 * I)
    assert N_equals(principal_branch((1 + I)**2, 1 * pi), 2 * I)

    # test argument sanitization
    assert principal_branch(x, I).func is principal_branch
    assert principal_branch(x, -4).func is principal_branch
    assert principal_branch(x, -oo).func is principal_branch
    assert principal_branch(x, zoo).func is principal_branch
Beispiel #22
0
def test_expint():
    from diofant import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei
    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s) / s, s, x,
                                    (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                  (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + Rational(1, 2))/(
        2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    / (2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + Rational(1, 2))), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + Rational(1, 2))), s,
        u, (0, 1)).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2) / 2 / s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, Integer(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == \
        ((s - log(s + 1))/s**2, 0, True)

    assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
        Heaviside(u)*Ci(u)
    assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
        Heaviside(x)*E1(x)
    assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
                x).rewrite(expint).expand() == \
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
Beispiel #23
0
def test_expint():
    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s)/s, s, x,
                                    (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                                             (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + Rational(1, 2))/(
            2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    / (2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + Rational(1, 2))), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + Rational(1, 2))),
        s, u, (0, 1)).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, Integer(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == \
        ((s - log(s + 1))/s**2, 0, True)

    assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
        Heaviside(u)*Ci(u)
    assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
        Heaviside(x)*E1(x)
    assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
                                     x).rewrite(expint).expand() == \
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
Beispiel #24
0
def test_powsimp_polar():
    p, q, r = symbols('p q r', polar=True)

    assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
    assert powsimp(p**x * q**x) == (p*q)**x
    assert p**x * (1/p)**x == 1
    assert (1/p)**x == p**(-x)

    assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
    assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
Beispiel #25
0
def test_powsimp_polar():
    p, q = symbols('p q', polar=True)

    assert (polar_lift(-1))**(2 * x) == exp_polar(2 * pi * I * x)
    assert powsimp(p**x * q**x) == (p * q)**x
    assert p**x * (1 / p)**x == 1
    assert (1 / p)**x == p**(-x)

    assert exp_polar(x) * exp_polar(y) == exp_polar(x) * exp_polar(y)
    assert powsimp(exp_polar(x) * exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z)/z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a/(1 - z) + z/(1 - z)**2)
    assert myexpand(lerchphi(z, -3, a), None)

    # polylog reduction
    assert myexpand(lerchphi(z, s, Rational(1, 2)),
                    2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z)
                                - polylog(s, polar_lift(-1)*sqrt(z))/sqrt(z)))
    assert myexpand(lerchphi(z, s, 2), -1/z + polylog(s, z)/z**2)
    assert myexpand(lerchphi(z, s, Rational(3, 2)), None)
    assert myexpand(lerchphi(z, s, Rational(7, 3)), None)
    assert myexpand(lerchphi(z, s, -Rational(1, 3)), None)
    assert myexpand(lerchphi(z, s, -Rational(5, 2)), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a),
                    2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, (a + 1)/2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(2*I*pi/5), s, a), None)
Beispiel #27
0
def test_meijer():
    pytest.raises(TypeError, lambda: meijerg(1, z))
    pytest.raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z))
    pytest.raises(TypeError, lambda: meijerg((1, 2, 3), (4, 5), z))

    assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \
        meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z)

    g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z)
    assert g.an == Tuple(1, 2)
    assert g.ap == Tuple(1, 2, 3, 4, 5)
    assert g.aother == Tuple(3, 4, 5)
    assert g.bm == Tuple(6, 7, 8, 9)
    assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14)
    assert g.bother == Tuple(10, 11, 12, 13, 14)
    assert g.argument == z
    assert g.nu == 75
    assert g.delta == -1
    assert g.is_commutative is True

    assert meijerg([1, 2], [3], [4], [5], z).delta == Rational(1, 2)

    # just a few checks to make sure that all arguments go where they should
    assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z)
    assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(),
                               Tuple(0), Tuple(Rational(1, 2)), z**2/4), cos(z), z)
    assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z),
              log(1 + z), z)

    # test exceptions
    pytest.raises(ValueError, lambda: meijerg(((3, 1), (2,)),
                                              ((oo,), (2, 0)), x))
    pytest.raises(ValueError, lambda: meijerg(((3, 1), (2,)),
                                              ((1,), (2, 0)), x))

    # differentiation
    g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(),
                (randcplx(), randcplx()), z)
    assert td(g, z)

    g = meijerg(Tuple(), (randcplx(),), Tuple(),
                (randcplx(), randcplx()), z)
    assert td(g, z)

    g = meijerg(Tuple(), Tuple(), Tuple(randcplx()),
                Tuple(randcplx(), randcplx()), z)
    assert td(g, z)

    a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3')
    assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \
        (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z)
         + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z

    assert meijerg([z, z], [], [], [], z).diff(z) == \
        Derivative(meijerg([z, z], [], [], [], z), z)

    # meijerg is unbranched wrt parameters
    assert meijerg([polar_lift(a1)], [polar_lift(a2)], [polar_lift(b1)],
                   [polar_lift(b2)], polar_lift(z)) == meijerg([a1], [a2],
                                                               [b1], [b2],
                                                               polar_lift(z))

    # integrand
    assert meijerg([a], [b], [c], [d], z).integrand(s) == \
        z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1))

    assert meijerg([[], []], [[Rational(1, 2)], [0]], 1).is_number
    assert not meijerg([[], []], [[x], [0]], 1).is_number
Beispiel #28
0
 def _eval_rewrite_as_besselj(self, nu, z):
     from diofant import polar_lift, exp
     return exp(-I * pi * nu / 2) * besselj(nu, polar_lift(I) * z)
Beispiel #29
0
def test_bugs():
    assert abs(re((1 + I)**2)) < 1e-15

    # anything that evalf's to 0 will do in place of polar_lift
    assert abs(polar_lift(0)).evalf() == 0
Beispiel #30
0
def test_bugs():
    assert abs(re((1 + I)**2)) < 1e-15

    # anything that evalf's to 0 will do in place of polar_lift
    assert abs(polar_lift(0)).evalf() == 0
Beispiel #31
0
def test_meijer():
    pytest.raises(TypeError, lambda: meijerg(1, z))
    pytest.raises(TypeError, lambda: meijerg(((1, ), (2, )), (3, ), (4, ), z))
    pytest.raises(TypeError, lambda: meijerg((1, 2, 3), (4, 5), z))

    assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \
        meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z)

    g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z)
    assert g.an == Tuple(1, 2)
    assert g.ap == Tuple(1, 2, 3, 4, 5)
    assert g.aother == Tuple(3, 4, 5)
    assert g.bm == Tuple(6, 7, 8, 9)
    assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14)
    assert g.bother == Tuple(10, 11, 12, 13, 14)
    assert g.argument == z
    assert g.nu == 75
    assert g.delta == -1
    assert g.is_commutative is True

    assert meijerg([1, 2], [3], [4], [5], z).delta == Rational(1, 2)

    # just a few checks to make sure that all arguments go where they should
    assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z)
    assert tn(
        sqrt(pi) *
        meijerg(Tuple(), Tuple(), Tuple(0), Tuple(Rational(1, 2)), z**2 / 4),
        cos(z), z)
    assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z), log(1 + z),
              z)

    # test exceptions
    pytest.raises(ValueError, lambda: meijerg(((3, 1), (2, )), ((oo, ),
                                                                (2, 0)), x))
    pytest.raises(ValueError, lambda: meijerg(((3, 1), (2, )), ((1, ),
                                                                (2, 0)), x))

    # differentiation
    g = meijerg((randcplx(), ), (randcplx() + 2 * I, ), Tuple(),
                (randcplx(), randcplx()), z)
    assert td(g, z)

    g = meijerg(Tuple(), (randcplx(), ), Tuple(), (randcplx(), randcplx()), z)
    assert td(g, z)

    g = meijerg(Tuple(), Tuple(), Tuple(randcplx()),
                Tuple(randcplx(), randcplx()), z)
    assert td(g, z)

    a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3')
    assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \
        (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z)
         + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z

    assert meijerg([z, z], [], [], [], z).diff(z) == \
        Derivative(meijerg([z, z], [], [], [], z), z)

    # meijerg is unbranched wrt parameters
    assert meijerg([polar_lift(a1)],
                   [polar_lift(a2)], [polar_lift(b1)], [polar_lift(b2)],
                   polar_lift(z)) == meijerg([a1], [a2], [b1], [b2],
                                             polar_lift(z))

    # integrand
    assert meijerg([a], [b], [c], [d], z).integrand(s) == \
        z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1))

    assert meijerg([[], []], [[Rational(1, 2)], [0]], 1).is_number
    assert not meijerg([[], []], [[x], [0]], 1).is_number