Beispiel #1
0
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')

        fornix = load_tractogram(data_path, 'same',
                                 bbox_valid_check=False).streamlines

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        sft = StatefulTractogram(f2, data_path, Space.RASMM)
        save_tractogram(sft, f2_path, bbox_valid_check=False)

        f1_path = pjoin(out_dir, "f1.trk")
        sft = StatefulTractogram(f, data_path, Space.RASMM)
        save_tractogram(sft, f1_path, bbox_valid_check=False)

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path,
                    f2_path,
                    greater_than=0,
                    clust_thr=10,
                    model_clust_thr=5.,
                    reduction_thr=10,
                    out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle = load_tractogram(recog_trk, 'same',
                                     bbox_valid_check=False).streamlines
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org = load_tractogram(recog_bundle,
                                         'same',
                                         bbox_valid_check=False).streamlines

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)
Beispiel #2
0
def test_min_vs_min_fast_precision():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[:20]

    static = [s.astype('f8') for s in static]
    moving = [m.astype('f8') for m in moving]

    bmd = BundleMinDistanceMatrixMetric()
    bmd.setup(static, moving)

    bmdf = BundleMinDistanceMetric()
    bmdf.setup(static, moving)

    x_test = [0.01, 0, 0, 0, 0, 0]

    print(bmd.distance(x_test))
    print(bmdf.distance(x_test))
    assert_equal(bmd.distance(x_test), bmdf.distance(x_test))
Beispiel #3
0
def test_min_vs_min_fast_precision():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[:20]

    static = [s.astype('f8') for s in static]
    moving = [m.astype('f8') for m in moving]

    bmd = BundleMinDistanceMatrixMetric()
    bmd.setup(static, moving)

    bmdf = BundleMinDistanceMetric()
    bmdf.setup(static, moving)

    x_test = [0.01, 0, 0, 0, 0, 0]

    print(bmd.distance(x_test))
    print(bmdf.distance(x_test))
    assert_equal(bmd.distance(x_test), bmdf.distance(x_test))
Beispiel #4
0
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')
        streams, hdr = nib.trackvis.read(data_path)
        fornix = [s[0] for s in streams]

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        save_trk(f2_path, f2, affine=np.eye(4))

        f1_path = pjoin(out_dir, "f1.trk")
        save_trk(f1_path, f, affine=np.eye(4))

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path,
                    f2_path,
                    greater_than=0,
                    clust_thr=10,
                    model_clust_thr=5.,
                    reduction_thr=10,
                    out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle, _ = load_trk(recog_trk)
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org, _ = load_trk(recog_bundle)

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)
Beispiel #5
0
    def evaluate_results(self, model_bundle, pruned_streamlines, slr_select):
        """ Compare the similiarity between two given bundles, model bundle,
        and extracted bundle.

        Parameters
        ----------
        model_bundle : Streamlines
        pruned_streamlines : Streamlines
        slr_select : tuple
            Select the number of streamlines from model to neirborhood of
            model to perform the local SLR.

        Returns
        -------
        ba_value : float
            bundle adjacency value between model bundle and pruned bundle
        bmd_value : float
            bundle minimum distance value between model bundle and
            pruned bundle
        """

        spruned_streamlines = Streamlines(pruned_streamlines)
        recog_centroids = self._cluster_model_bundle(
            spruned_streamlines,
            model_clust_thr=1.25)
        mod_centroids = self._cluster_model_bundle(
            model_bundle,
            model_clust_thr=1.25)
        recog_centroids = Streamlines(recog_centroids)
        model_centroids = Streamlines(mod_centroids)
        ba_value = bundle_adjacency(set_number_of_points(recog_centroids, 20),
                                    set_number_of_points(model_centroids, 20),
                                    threshold=10)

        BMD = BundleMinDistanceMetric()
        static = select_random_set_of_streamlines(model_bundle,
                                                  slr_select[0])
        moving = select_random_set_of_streamlines(pruned_streamlines,
                                                  slr_select[1])
        nb_pts = 20
        static = set_number_of_points(static, nb_pts)
        moving = set_number_of_points(moving, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        return ba_value, bmd_value
Beispiel #6
0
    def evaluate_results(self, model_bundle, pruned_streamlines, slr_select):
        """ Comapare the similiarity between two given bundles, model bundle,
        and extracted bundle.

        Parameters
        ----------
        model_bundle : Streamlines
        pruned_streamlines : Streamlines
        slr_select : tuple
            Select the number of streamlines from model to neirborhood of
            model to perform the local SLR.

        Returns
        -------
        ba_value : float
            bundle analytics value between model bundle and pruned bundle
        bmd_value : float
            bundle minimum distance value between model bundle and
            pruned bundle
        """

        spruned_streamlines = Streamlines(pruned_streamlines)
        recog_centroids = self._cluster_model_bundle(
            spruned_streamlines,
            model_clust_thr=1.25)
        mod_centroids = self._cluster_model_bundle(
            model_bundle,
            model_clust_thr=1.25)
        recog_centroids = Streamlines(recog_centroids)
        model_centroids = Streamlines(mod_centroids)
        ba_value = ba_analysis(recog_centroids, model_centroids, threshold=10)

        BMD = BundleMinDistanceMetric()
        static = select_random_set_of_streamlines(model_bundle,
                                                  slr_select[0])
        moving = select_random_set_of_streamlines(pruned_streamlines,
                                                  slr_select[1])
        nb_pts = 20
        static = set_number_of_points(static, nb_pts)
        moving = set_number_of_points(moving, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        return ba_value, bmd_value
Beispiel #7
0
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')
        streams, hdr = nib.trackvis.read(data_path)
        fornix = [s[0] for s in streams]

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        save_trk(f2_path, f2, affine=np.eye(4))

        f1_path = pjoin(out_dir, "f1.trk")
        save_trk(f1_path, f, affine=np.eye(4))

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path, f2_path, greater_than=0, clust_thr=10,
                    model_clust_thr=5., reduction_thr=10, out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle, _ = load_trk(recog_trk)
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org, _ = load_trk(recog_bundle)

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)