Beispiel #1
0
def build_dataset_from_input(
    transforms,
    dataset_config,
    initial_images,
    initial_kspaces,
    filenames_filter,
    data_root,
    pass_dictionaries,
):
    pass_h5s = None
    if initial_images is not None and initial_kspaces is not None:
        raise ValueError(
            f"initial_images and initial_kspaces are mutually exclusive. "
            f"Got {initial_images} and {initial_kspaces}.")

    if initial_images:
        pass_h5s = {
            "initial_image": (dataset_config.input_image_key, initial_images)
        }

    if initial_kspaces:
        pass_h5s = {
            "initial_kspace":
            (dataset_config.input_kspace_key, initial_kspaces)
        }

    dataset = build_dataset(
        root=data_root,
        filenames_filter=filenames_filter,
        transforms=transforms,
        pass_h5s=pass_h5s,
        pass_dictionaries=pass_dictionaries,
        **remove_keys(dataset_config, ["transforms", "lists"]),
    )
    return dataset
Beispiel #2
0
def build_inference_transforms(env, mask_func, dataset_cfg):
    partial_build_mri_transforms = partial(
        build_mri_transforms,
        forward_operator=env.engine.forward_operator,
        backward_operator=env.engine.backward_operator,
        mask_func=mask_func,
    )
    transforms = partial_build_mri_transforms(
        **remove_keys(dataset_cfg.transforms, "masking"))
    return transforms
Beispiel #3
0
def build_transforms_from_environment(env, dataset_config):
    mri_transforms_func = functools.partial(
        build_mri_transforms,
        forward_operator=env.engine.forward_operator,
        backward_operator=env.engine.backward_operator,
        mask_func=build_masking_function(**dataset_config.transforms.masking),
    )

    transforms = mri_transforms_func(**remove_keys(dataset_config.transforms, "masking"))
    return transforms