Beispiel #1
0
 def test_init_params(self):
     """Tests that KFold() raises errors on invalid parameters"""
     with self.assertRaises(ValueError):
         KFold(n_splits=2.5)
     with self.assertRaises(ValueError):
         KFold(n_splits=1)
     with self.assertRaises(TypeError):
         KFold(shuffle=None)
Beispiel #2
0
 def test_split_no_shuffle(self):
     """Tests KFold.split() method with shuffle=False"""
     x_np = np.random.rand(1000, 3)
     y_np = np.arange(1000)
     x = ds.array(x_np, (111, 3))
     y = ds.array(y_np[:, np.newaxis], (111, 1))
     cv = KFold(shuffle=False)
     n_splits = 0
     for train_ds, test_ds in cv.split(x, y):
         len_x_test = test_ds[0].shape[0]
         self.assertEqual(len_x_test, 200)
         n_splits += 1
     self.assertEqual(cv.get_n_splits(), n_splits)
Beispiel #3
0
 def test_split_no_shuffle_uneven_folds(self):
     """Tests KFold.split() method with shuffle=False and uneven folds"""
     x_np = np.random.rand(1000, 3)
     y_np = np.arange(1000)
     x = ds.array(x_np, (334, 3))
     y = ds.array(y_np[:, np.newaxis], (334, 1))
     cv = KFold(n_splits=3, shuffle=False)
     n_splits = 0
     for train_ds, test_ds in cv.split(x, y):
         len_x_test = test_ds[0].shape[0]
         self.assertTrue(len_x_test == 333 or len_x_test == 334,
                         'Fold size is ' + str(len_x_test) +
                         ' and should be 333 or 334.')
         n_splits += 1
     self.assertEqual(cv.get_n_splits(), n_splits)
     self.assertEqual(3, n_splits)
Beispiel #4
0
 def test_split_single_subset_no_shuffle_uneven_folds(self):
     """Tests KFold.split() from single subset, shuffle=False and uneven"""
     x_np = np.random.rand(1000, 3)
     y_np = np.arange(1000)
     x = ds.array(x_np, (1000, 3))
     y = ds.array(y_np[:, np.newaxis], (1000, 1))
     cv = KFold(n_splits=6, shuffle=False)
     n_splits = 0
     for train_ds, test_ds in cv.split(x, y):
         len_x_train = train_ds[0].shape[0]
         len_y_train = train_ds[1].shape[0]
         self.assertEquals(len_x_train, len_y_train)
         len_x_test = test_ds[0].shape[0]
         len_y_test = test_ds[1].shape[0]
         self.assertEquals(len_x_test, len_y_test)
         self.assertEquals(len_x_train + len_x_test, 1000)
         self.assertTrue(len_x_test == 166 or len_x_test == 167,
                         'Fold size is ' + str(len_x_test) +
                         ' but should be 166 or 167.')
         n_splits += 1
     self.assertEqual(cv.get_n_splits(), n_splits)
Beispiel #5
0
    def test_cv_class(self):
        """Tests GridSearchCV with a class cv parameter."""
        x_np, y_np = datasets.load_iris(return_X_y=True)
        x = ds.array(x_np, (30, 4))
        y = ds.array(y_np[:, np.newaxis], (30, 1))
        rf = RandomForestClassifier()
        param_grid = {'n_estimators': (2, 4)}
        searcher = GridSearchCV(rf, param_grid, cv=KFold(4))
        searcher.fit(x, y)

        self.assertTrue(hasattr(searcher, 'cv_results_'))
        self.assertTrue(hasattr(searcher, 'best_estimator_'))
        self.assertTrue(hasattr(searcher, 'best_score_'))
        self.assertTrue(hasattr(searcher, 'best_params_'))
        self.assertTrue(hasattr(searcher, 'best_index_'))
        self.assertTrue(hasattr(searcher, 'scorer_'))