def testShortCircuit(self): """Test that creation short-circuits to reuse existing references""" sd = {} for s in self.ss: sd[s] = 1 for t in self.ts: if hasattr(t, 'x'): self.assertTrue(safeRef(t.x) in sd) else: self.assertTrue(safeRef(t) in sd)
def setUp(self): ts = [] ss = [] for x in xrange(5000): t = Test1() ts.append(t) s = safeRef(t.x, self._closure) ss.append(s) ts.append(test2) ss.append(safeRef(test2, self._closure)) for x in xrange(30): t = Test2() ts.append(t) s = safeRef(t, self._closure) ss.append(s) self.ts = ts self.ss = ss self.closureCount = 0
def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): """ Connect receiver to sender for signal. Arguments: receiver A function or an instance method which is to receive signals. Receivers must be hashable objects. if weak is True, then receiver must be weak-referencable (more precisely saferef.safeRef() must be able to create a reference to the receiver). Receivers must be able to accept keyword arguments. If receivers have a dispatch_uid attribute, the receiver will not be added if another receiver already exists with that dispatch_uid. sender The sender to which the receiver should respond Must either be of type Signal, or None to receive events from any sender. weak Whether to use weak references to the receiver By default, the module will attempt to use weak references to the receiver objects. If this parameter is false, then strong references will be used. dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will usually be a string, though it may be anything hashable. """ if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) if weak: receiver = saferef.safeRef(receiver, onDelete=self._remove_receiver) self.lock.acquire() try: for r_key, _ in self.receivers: if r_key == lookup_key: break else: self.receivers.append((lookup_key, receiver)) finally: self.lock.release()
def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): """ Connect receiver to sender for signal. Arguments: receiver A function or an instance method which is to receive signals. Receivers must be hashable objects. If weak is True, then receiver must be weak-referencable (more precisely saferef.safeRef() must be able to create a reference to the receiver). Receivers must be able to accept keyword arguments. If receivers have a dispatch_uid attribute, the receiver will not be added if another receiver already exists with that dispatch_uid. sender The sender to which the receiver should respond. Must either be of type Signal, or None to receive events from any sender. weak Whether to use weak references to the receiver. By default, the module will attempt to use weak references to the receiver objects. If this parameter is false, then strong references will be used. dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will usually be a string, though it may be anything hashable. """ if self.debug: # If DEBUG is on, check that we got a good receiver import inspect assert callable(receiver), "Signal receivers must be callable." # Check for **kwargs # Not all callables are inspectable with getargspec, so we'll # try a couple different ways but in the end fall back on assuming # it is -- we don't want to prevent registration of valid but weird # callables. try: argspec = inspect.getargspec(receiver) except TypeError: try: argspec = inspect.getargspec(receiver.__call__) except (TypeError, AttributeError): argspec = None if argspec: assert argspec[2] is not None, \ "Signal receivers must accept keyword arguments (**kwargs)." if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) if weak: receiver = saferef.safeRef(receiver, onDelete=self._remove_receiver) with self.lock: for r_key, _ in self.receivers: if r_key == lookup_key: break else: self.receivers.append((lookup_key, receiver)) self.sender_receivers_cache.clear()
def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): """ Connect receiver to sender for signal. Arguments: receiver A function or an instance method which is to receive signals. Receivers must be hashable objects. If weak is True, then receiver must be weak-referencable (more precisely saferef.safeRef() must be able to create a reference to the receiver). Receivers must be able to accept keyword arguments. If receivers have a dispatch_uid attribute, the receiver will not be added if another receiver already exists with that dispatch_uid. sender The sender to which the receiver should respond. Must either be of type Signal, or None to receive events from any sender. weak Whether to use weak references to the receiver. By default, the module will attempt to use weak references to the receiver objects. If this parameter is false, then strong references will be used. dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will usually be a string, though it may be anything hashable. """ DEBUG = True # If DEBUG is on, check that we got a good receiver if DEBUG: import inspect assert callable(receiver), "Signal receivers must be callable." # Check for **kwargs # Not all callables are inspectable with getargspec, so we'll # try a couple different ways but in the end fall back on assuming # it is -- we don't want to prevent registration of valid but weird # callables. try: argspec = inspect.getargspec(receiver) except TypeError: try: argspec = inspect.getargspec(receiver.__call__) except (TypeError, AttributeError): argspec = None if argspec: assert argspec[2] is not None, \ "Signal receivers must accept keyword arguments (**kwargs)." if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) if weak: receiver = saferef.safeRef(receiver, onDelete=self._remove_receiver) with self.lock: for r_key, _ in self.receivers: if r_key == lookup_key: break else: self.receivers.append((lookup_key, receiver)) self.sender_receivers_cache.clear()
def testIn(self): """Test the "in" operator for safe references (cmp)""" for t in self.ts[:50]: self.assertTrue(safeRef(t.x) in self.ss)