Beispiel #1
0
class TestDistArrayCreation(IpclusterTestCase):

    """Test distarray creation methods"""

    def setUp(self):
        self.context = Context(self.client)

    def test_zeros(self):
        shape = (16, 16)
        zero_distarray = self.context.zeros(shape)
        zero_ndarray = numpy.zeros(shape)
        assert_array_equal(zero_distarray.tondarray(), zero_ndarray)

    def test_ones(self):
        shape = (16, 16)
        one_distarray = self.context.ones(shape)
        one_ndarray = numpy.ones(shape)
        assert_array_equal(one_distarray.tondarray(), one_ndarray)

    def test_empty(self):
        shape = (16, 16)
        empty_distarray = self.context.empty(shape)
        self.assertEqual(empty_distarray.shape, shape)

    def test_fromndarray(self):
        ndarr = numpy.arange(16).reshape(4, 4)
        distarr = self.context.fromndarray(ndarr)
        for (i, j), val in numpy.ndenumerate(ndarr):
            self.assertEqual(distarr[i, j], ndarr[i, j])
Beispiel #2
0
class TestDistArrayCreation(unittest.TestCase):

    """Test distarray creation methods"""

    def setUp(self):
        self.context = Context()

    def tearDown(self):
        self.context.close()

    def test___init__(self):
        shape = (100, 100)
        distribution = Distribution.from_shape(self.context, shape, ('b', 'c'))
        da = DistArray(distribution, dtype=int)
        da.fill(42)
        nda = numpy.empty(shape, dtype=int)
        nda.fill(42)
        assert_array_equal(da.tondarray(), nda)

    def test_zeros(self):
        shape = (16, 16)
        zero_distarray = self.context.zeros(shape)
        zero_ndarray = numpy.zeros(shape)
        assert_array_equal(zero_distarray.tondarray(), zero_ndarray)

    def test_ones(self):
        shape = (16, 16)
        one_distarray = self.context.ones(shape)
        one_ndarray = numpy.ones(shape)
        assert_array_equal(one_distarray.tondarray(), one_ndarray)

    def test_empty(self):
        shape = (16, 16)
        empty_distarray = self.context.empty(shape)
        self.assertEqual(empty_distarray.shape, shape)

    def test_fromndarray(self):
        ndarr = numpy.arange(16).reshape(4, 4)
        distarr = self.context.fromndarray(ndarr)
        for (i, j), val in numpy.ndenumerate(ndarr):
            self.assertEqual(distarr[i, j], ndarr[i, j])

    def test_grid_rank(self):
        # regression test for issue #235
        a = self.context.empty((4, 4, 4), dist=('b', 'n', 'b'),
                               grid_shape=(1, 1, 4))
        self.assertEqual(a.grid_shape, (1, 1, 4))

    def test_fromfunction(self):
        fn = lambda i, j: i + j
        shape = (7, 9)
        expected = numpy.fromfunction(fn, shape, dtype=int)
        result = self.context.fromfunction(fn, shape, dtype=int)
        assert_array_equal(expected, result.tondarray())
Beispiel #3
0
class TestDistArray(unittest.TestCase):

    def setUp(self):
        self.dac = Context()

    def tearDown(self):
        self.dac.close()

    def test_set_and_getitem_block_dist(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'b'})

        for val in range(size):
            dap[val] = val

        for val in range(size):
            self.assertEqual(dap[val], val)

        for i in range(1, size + 1):
            dap[-i] = i
            self.assertEqual(dap[-i], i)

    def test_set_and_getitem_nd_block_dist(self):
        size = 5
        dap = self.dac.empty((size, size), dist={0: 'b', 1: 'b'})

        for row in range(size):
            for col in range(size):
                val = size*row + col
                dap[row, col] = val
                self.assertEqual(dap[row, col], val)

        for row in range(1 ,size + 1):
            for col in range(1, size + 1):
                dap[-row, -col] = row + col
                self.assertEqual(dap[-row, -col], row + col)


    def test_set_and_getitem_cyclic_dist(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'c'})

        for val in range(size):
            dap[val] = val
            self.assertEqual(dap[val], val)

        for i in range(1, size + 1):
            dap[-i] = i
            self.assertEqual(dap[-i], i)

    def test_get_index_error(self):
        dap = self.dac.empty((10,), dist={0: 'c'})
        with self.assertRaises(IndexError):
            dap[11]
        with self.assertRaises(IndexError):
            dap[-11]

    def test_set_index_error(self):
        dap = self.dac.empty((10,), dist={0: 'c'})
        with self.assertRaises(IndexError):
            dap[11] = 55
        with self.assertRaises(IndexError):
            dap[-11] = 55

    def test_iteration(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'c'})
        dap.fill(10)
        for val in dap:
            self.assertEqual(val, 10)

    def test_tondarray(self):
        dap = self.dac.empty((3, 3))
        ndarr = numpy.arange(9).reshape(3, 3)
        for (i, j), val in numpy.ndenumerate(ndarr):
            dap[i, j] = ndarr[i, j]
        numpy.testing.assert_array_equal(dap.tondarray(), ndarr)

    def test_global_tolocal_bug(self):
        # gh-issue #154
        dap = self.dac.zeros((3, 3), dist=('n', 'b'))
        ndarr = numpy.zeros((3, 3))
        numpy.testing.assert_array_equal(dap.tondarray(), ndarr)
Beispiel #4
0
class TestDistArray(IpclusterTestCase):

    def setUp(self):
        self.dac = Context(self.client)

    def test_set_and_getitem_block_dist(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'b'})

        for val in range(size):
            dap[val] = val

        for val in range(size):
            self.assertEqual(dap[val], val)

    def test_set_and_getitem_nd_block_dist(self):
        size = 5
        dap = self.dac.empty((size, size), dist={0: 'b', 1: 'b'})

        for row in range(size):
            for col in range(size):
                val = size*row + col
                dap[row, col] = val

        for row in range(size):
            for col in range(size):
                val = size*row + col
                self.assertEqual(dap[row, col], val)

    def test_set_and_getitem_cyclic_dist(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'c'})

        for val in range(size):
            dap[val] = val

        for val in range(size):
            self.assertEqual(dap[val], val)

    @unittest.skip("Slicing not yet implemented.")
    def test_slice_in_getitem_block_dist(self):
        dap = self.dac.empty((100,), dist={0: 'b'})
        self.assertIsInstance(dap[20:40], DistArray)

    @unittest.skip("Slicing not yet implemented.")
    def test_slice_in_setitem_raises_valueerror(self):
        dap = self.dac.empty((100,), dist={0: 'b'})
        vals = numpy.random.random(20)
        with self.assertRaises(NotImplementedError):
            dap[20:40] = vals

    @unittest.skip('Slice assignment not yet implemented.')
    def test_slice_size_error(self):
        dap = self.dac.empty((100,), dist={0: 'c'})
        with self.assertRaises(NotImplementedError):
            dap[20:40] = (11, 12)

    def test_get_index_error(self):
        dap = self.dac.empty((10,), dist={0: 'c'})
        with self.assertRaises(IndexError):
            dap[11]

    def test_set_index_error(self):
        dap = self.dac.empty((10,), dist={0: 'c'})
        with self.assertRaises(IndexError):
            dap[11] = 55

    def test_iteration(self):
        size = 10
        dap = self.dac.empty((size,), dist={0: 'c'})
        dap.fill(10)
        for val in dap:
            self.assertEqual(val, 10)

    def test_tondarray(self):
        dap = self.dac.empty((3, 3))
        ndarr = numpy.arange(9).reshape(3, 3)
        for (i, j), val in numpy.ndenumerate(ndarr):
            dap[i, j] = ndarr[i, j]
        numpy.testing.assert_array_equal(dap.tondarray(), ndarr)

    def test_global_tolocal_bug(self):
        # gh-issue #154
        dap = self.dac.zeros((3, 3), dist=('n', 'b'))
        ndarr = numpy.zeros((3, 3))
        numpy.testing.assert_array_equal(dap.tondarray(), ndarr)