Beispiel #1
0
def compute_elbo_smm(y, reconstructions, theta, phi_tilde, x_k_samps, log_z_given_y_phi, decoder_type):
    # ELBO for latent SMM
    with tf.name_scope('elbo'):
        # unpack phi_gmm and compute expected theta
        mu_theta, sigma_theta = unpack_smm(theta[1:3])
        alpha_k = dirichlet.natural_to_standard(theta[0])
        expected_log_pi_theta = dirichlet.expected_log_pi(alpha_k)
        dof = theta[3]  # Student-t degrees of freedom

        # make sure that gradient is not propagated through stochastic Dirichlet parameter
        with tf.name_scope('block_backprop'):
            expected_log_pi_theta = tf.stop_gradient(expected_log_pi_theta)
            dof = tf.stop_gradient(dof)

        r_nk = tf.exp(log_z_given_y_phi)

        # compute negative reconstruction error; sum over minibatch (use VAE function)
        means, out_2 = reconstructions  # out_2 is either gaussian variances or bernoulli logits.
        if decoder_type == 'standard':
            neg_reconstruction_error = vae.expected_diagonal_gaussian_loglike(y, means, out_2, weights=r_nk)
        elif decoder_type == 'bernoulli':
            neg_reconstruction_error = vae.expected_bernoulli_loglike(y, out_2, r_nk=r_nk)
        else:
            raise NotImplementedError

        eta1_phi_tilde, eta2_phi_tilde = phi_tilde
        N, K, L, _ = eta2_phi_tilde.get_shape().as_list()
        eta1_phi_tilde = tf.reshape(eta1_phi_tilde, (N, K, L))

        with tf.name_scope('compute_regularizer'):
            # compute E[log q_phi(x,z=k|y)]
            with tf.name_scope('log_numerator'):
                log_N_x_given_phi = gaussian.log_probability_nat_per_samp(x_k_samps, eta1_phi_tilde, eta2_phi_tilde)
                log_numerator = log_N_x_given_phi + tf.expand_dims(log_z_given_y_phi, axis=2)

            with tf.name_scope('log_denominator'):
                # compute E[log p_theta(x,z=k)]
                log_N_x_given_theta = student_t.log_probability_per_samp(x_k_samps, mu_theta, sigma_theta, dof)
                log_denominator = log_N_x_given_theta + tf.expand_dims(tf.expand_dims(expected_log_pi_theta, axis=0), axis=2)

            regularizer_term = tf.reduce_mean(
                tf.reduce_sum(
                    tf.reduce_sum(
                        tf.multiply(tf.expand_dims(r_nk, axis=2),
                                    log_numerator - log_denominator),
                        axis=1),  # weighted average over components
                    axis=0)  # sum over data points
            )  # mean over samples

        elbo = tf.subtract(neg_reconstruction_error, regularizer_term, name='elbo')

        with tf.name_scope('elbo_summaries'):
            details = tf.tuple((neg_reconstruction_error,
                                tf.reduce_sum(tf.multiply(r_nk, tf.reduce_mean(log_numerator, -1))),
                                tf.reduce_sum(tf.multiply(r_nk, tf.reduce_mean(log_denominator, -1))),
                                regularizer_term), name='debug')

        return elbo, details
Beispiel #2
0
 def expected_values(self):
     _, m, C, v = niw.natural_to_standard(self.A, self.b, self.beta,
                                          self.v_hat)
     exp_log_pi = dirichlet.expected_log_pi(
         dirichlet.natural_to_standard(self.alpha))
     with tf.name_scope('niw_expectation'):
         exp_m = tf.identity(m, 'expected_mean')
         C_inv = tf.matrix_inverse(C)
         C_inv_sym = tf.divide(tf.add(C_inv, tf.matrix_transpose(C_inv)),
                               2.,
                               name='C_inv_symmetrised')
         exp_C = tf.matrix_inverse(tf.multiply(C_inv_sym,
                                               tf.expand_dims(
                                                   tf.expand_dims(v, 1), 2),
                                               name='expected_precision'),
                                   name='expected_covariance')
         return exp_log_pi, exp_m, exp_C
                    if lbl_tr is not None:
                        entr_tr, prty_tr = purity(tf.exp(log_z_given_y_phi),
                                                  lbl_tr)
                        tf.summary.scalar('entropy_tr', entr_tr)
                        tf.summary.scalar('purity_tr', prty_tr)

            # useful values for tensorboard and plotting
            with tf.name_scope('plotting_prep'):
                if 'smm' in config['method']:
                    mu, sigma = svae.unpack_smm(theta[1:3])
                else:
                    beta_k, m_k, C_k, v_k = niw.natural_to_standard(
                        theta[1], theta[2], theta[3], theta[4])
                    mu, sigma = niw.expected_values((beta_k, m_k, C_k, v_k))
                alpha_k = dirichlet.natural_to_standard(theta[0])
                expected_log_pi = dirichlet.expected_log_pi(alpha_k)
                pi_theta = tf.exp(expected_log_pi)
                theta_plot = mu, sigma, pi_theta
                q_z_given_y_phi = tf.exp(log_z_given_y_phi)
                neg_normed_elbo = -tf.divide(tf.reduce_sum(tower_elbo),
                                             size_minibatch)

                tf.summary.scalar('elbo/elbo_normed', neg_normed_elbo)
                tf.summary.scalar(
                    'elbo/neg_rec_err',
                    tf.divide(tf.reduce_sum(tower_neg_rec_err),
                              size_minibatch))
                tf.summary.scalar(
                    'elbo/regularizer',
                    tf.divide(tf.reduce_sum(tower_regularizer),
                              size_minibatch))
Beispiel #4
0
def compute_elbo(y, reconstructions, theta, phi_tilde, x_k_samps, log_z_given_y_phi, decoder_type):
    # ELBO for latent GMM
    with tf.name_scope('elbo'):
        # unpack phi_gmm and compute expected theta
        with tf.name_scope('expct_theta_to_nat'):
            beta_k, m_k, C_k, v_k = niw.natural_to_standard(*theta[1:])
            mu, sigma = niw.expected_values((beta_k, m_k, C_k, v_k))
            eta1_theta, eta2_theta = gaussian.standard_to_natural(mu, sigma)
            alpha_k = dirichlet.natural_to_standard(theta[0])
            expected_log_pi_theta = dirichlet.expected_log_pi(alpha_k)

            # do not backpropagate through GMM
            with tf.name_scope('block_backprop'):
                eta1_theta = tf.stop_gradient(eta1_theta)
                eta2_theta = tf.stop_gradient(eta2_theta)
                expected_log_pi_theta = tf.stop_gradient(expected_log_pi_theta)

        r_nk = tf.exp(log_z_given_y_phi)

        # compute negative reconstruction error; sum over minibatch (use VAE function)
        means, out_2 = reconstructions  # out_2 is either gaussian variances or bernoulli logits.
        if decoder_type == 'standard':
            neg_reconstruction_error = vae.expected_diagonal_gaussian_loglike(y, means, out_2, weights=r_nk)
        elif decoder_type == 'bernoulli':
            neg_reconstruction_error = vae.expected_bernoulli_loglike(y, out_2, r_nk=r_nk)
        else:
            raise NotImplementedError

        # compute E[log q_phi(x,z=k|y)]
        eta1_phi_tilde, eta2_phi_tilde = phi_tilde
        N, K, L, _ = eta2_phi_tilde.get_shape().as_list()
        eta1_phi_tilde = tf.reshape(eta1_phi_tilde, (N, K, L))

        N, K, S, L = x_k_samps.get_shape().as_list()

        with tf.name_scope('compute_regularizer'):
            with tf.name_scope('log_numerator'):
                log_N_x_given_phi = gaussian.log_probability_nat_per_samp(x_k_samps, eta1_phi_tilde, eta2_phi_tilde)
                log_numerator = log_N_x_given_phi + tf.expand_dims(log_z_given_y_phi, axis=2)

            with tf.name_scope('log_denominator'):
                log_N_x_given_theta = gaussian.log_probability_nat_per_samp(x_k_samps,
                                                                            tf.tile(tf.expand_dims(eta1_theta, axis=0), [N, 1, 1]),
                                                                            tf.tile(tf.expand_dims(eta2_theta, axis=0), [N, 1, 1, 1]))
                log_denominator = log_N_x_given_theta + tf.expand_dims(tf.expand_dims(expected_log_pi_theta, axis=0), axis=2)

            regularizer_term = tf.reduce_mean(
                tf.reduce_sum(
                    tf.reduce_sum(
                        tf.multiply(tf.expand_dims(r_nk, axis=2),
                                    log_numerator - log_denominator),
                        axis=1),  # weighted average over components
                    axis=0)  # sum over minibatch
            )  # mean over samples

        elbo = tf.subtract(neg_reconstruction_error, regularizer_term, name='elbo')

        with tf.name_scope('elbo_summaries'):
            details = tf.tuple((neg_reconstruction_error,
                                tf.reduce_sum(tf.multiply(r_nk, tf.reduce_mean(log_numerator, -1))),
                                tf.reduce_sum(tf.multiply(r_nk, tf.reduce_mean(log_denominator, -1))),
                                regularizer_term), name='debug')

        return elbo, details
def visualize_svae(ax,
                   config,
                   log_path,
                   ratio_tr=0.7,
                   nb_samples=20,
                   grid_density=100,
                   window=((-20, 20), (-20, 20)),
                   param_device='/cpu:0'):

    with tf.device(param_device):

        if config['dataset'] in ['mnist', 'fashion']:
            binarise = True
            size_minibatch = 1024
            output_type = 'bernoulli'
        else:
            binarise = False
            size_minibatch = -1
            output_type = 'standard'

        # First we build the model graph so that we can load the learned parameters from a checkpoint.
        # Initialisations don't matter, they'll be overwritten with saver.restore().
        data, lbl, _, _ = make_minibatch(config['dataset'],
                                         path_datadir='../datasets',
                                         ratio_tr=ratio_tr,
                                         seed_split=0,
                                         size_minibatch=size_minibatch,
                                         size_testbatch=-1,
                                         binarise=binarise)

        # define nn-architecture
        encoder_layers = [(config['U'], tf.tanh), (config['U'], tf.tanh),
                          (config['L'], 'natparam')]
        decoder_layers = [(config['U'], tf.tanh), (config['U'], tf.tanh),
                          (int(data.get_shape()[1]), output_type)]
        sample_size = 100

        if config['dataset'] in ['mnist', 'fashion']:
            data = tf.where(tf.equal(data, -1),
                            tf.zeros_like(data, dtype=tf.float32),
                            tf.ones_like(data, dtype=tf.float32))

        with tf.name_scope('model'):
            gmm_prior, theta = svae.init_mm(config['K'],
                                            config['L'],
                                            seed=config['seed'],
                                            param_device='/gpu:0')
            theta_copied = niw.natural_to_standard(tf.identity(gmm_prior[1]),
                                                   tf.identity(gmm_prior[2]),
                                                   tf.identity(gmm_prior[3]),
                                                   tf.identity(gmm_prior[4]))
            _, sigma_k = niw.expected_values(theta_copied)
            pi_k_init = tf.nn.softmax(
                tf.random_normal(shape=(config['K'], ),
                                 mean=0.0,
                                 stddev=1.,
                                 seed=config['seed']))
            L_k = tf.cholesky(sigma_k)
            mu_k = tf.random_normal(shape=(config['K'], config['L']),
                                    stddev=1,
                                    seed=config['seed'])
            with tf.variable_scope('phi_gmm'):
                mu_k = variable_on_device('mu_k',
                                          shape=None,
                                          initializer=mu_k,
                                          trainable=True,
                                          device=param_device)
                L_k = variable_on_device('L_k',
                                         shape=None,
                                         initializer=L_k,
                                         trainable=True,
                                         device=param_device)
                pi_k = variable_on_device('log_pi_k',
                                          shape=None,
                                          initializer=pi_k_init,
                                          trainable=True,
                                          device=param_device)
            phi_gmm = mu_k, L_k, pi_k
            _ = vae.make_encoder(data,
                                 layerspecs=encoder_layers,
                                 stddev_init=.1,
                                 seed=config['seed'])

        with tf.name_scope('random_sampling'):
            # compute expected theta_pgm
            beta_k, m_k, C_k, v_k = niw.natural_to_standard(*theta[1:])
            alpha_k = dirichlet.natural_to_standard(theta[0])
            mean, cov = niw.expected_values((beta_k, m_k, C_k, v_k))
            expected_log_pi = dirichlet.expected_log_pi(alpha_k)
            pi = tf.exp(expected_log_pi)

            # sample from prior (first from
            x_k_samples = tf.contrib.distributions.MultivariateNormalFullCovariance(
                loc=mean, covariance_matrix=cov).sample(sample_size)
            z_samples = tf.multinomial(logits=tf.reshape(tf.log(pi), (1, -1)),
                                       num_samples=sample_size,
                                       name='k_samples')
            z_samples = tf.squeeze(z_samples)

            assert z_samples.get_shape() == (sample_size, )
            assert x_k_samples.get_shape() == (sample_size, config['K'],
                                               config['L'])

            # compute reconstructions
            y_k_samples, _ = vae.make_decoder(x_k_samples,
                                              layerspecs=decoder_layers,
                                              stddev_init=.1,
                                              seed=config['seed'])

            assert y_k_samples.get_shape() == (sample_size, config['K'],
                                               data.get_shape()[1])

        with tf.name_scope('cluster_sample_data'):
            tf.get_variable_scope().reuse_variables()
            _, clustering = svae.predict(data,
                                         phi_gmm,
                                         encoder_layers,
                                         decoder_layers,
                                         seed=config['seed'])

        # load trained model
        saver = tf.train.Saver()
        model_path = log_path + '/' + generate_log_id(config)
        print(model_path)
        latest_ckpnt = tf.train.latest_checkpoint(model_path)

        sess_config = tf.ConfigProto(allow_soft_placement=True)
        sess = tf.Session(config=sess_config)
        saver.restore(sess, latest_ckpnt)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        collected_y_samps = []
        collected_z_samps = []
        for s in range(nb_samples):
            y_samps, z_samps = sess.run((y_k_samples, z_samples))
            collected_y_samps.append(y_samps)
            collected_z_samps.append(z_samps)
        collected_y_samps = np.concatenate(collected_y_samps, axis=0)
        collected_z_samps = np.concatenate(collected_z_samps, axis=0)
        assert collected_y_samps.shape == (nb_samples * sample_size,
                                           config['K'], data.shape[1])
        assert collected_z_samps.shape == (nb_samples * sample_size, )

        # use 300 sample points from the dataset
        data, lbl, clustering = sess.run(
            (data[:300], lbl[:300], clustering[:300]))

        # compute PCA if necessary
        samples_2d = []
        if data.shape[1] > 2:
            pca = PCA(n_components=2).fit(data)
            data2d = pca.transform(data)

            for z_samples in range(config['K']):
                chosen = collected_z_samps == z_samples
                samps_k = collected_y_samps[chosen, z_samples, :]
                if samps_k.size > 0:
                    samples_2d.append(pca.transform(samps_k))
        else:
            data2d = data
            for z_samples in range(config['K']):
                chosen = (collected_z_samps == z_samples)
                samps_k = collected_y_samps[chosen, z_samples, :]
                if samps_k.size > 0:
                    samples_2d.append(samps_k)

        # plot 2d-histogram (one histogram for each of the K components)
        from matplotlib.colors import LogNorm
        for z_samples, samples in enumerate(samples_2d):
            ax.hist2d(samples[:, 0],
                      samples[:, 1],
                      bins=grid_density,
                      range=window,
                      cmap=make_colormap(dark_colors[z_samples %
                                                     len(dark_colors)]),
                      normed=True,
                      norm=LogNorm())

        # overlay histogram with sample datapoints (coloured according to their most likely cluster allocation)
        labels = np.argmax(lbl, axis=1)
        for c in np.unique(labels):
            in_class_c = (labels == c)
            color = bright_colors[int(c % len(bright_colors))]
            marker = markers[int(c % len(markers))]
            ax.scatter(data2d[in_class_c, 0],
                       data2d[in_class_c, 1],
                       c=color,
                       marker=marker,
                       s=data_dot_size,
                       linewidths=0)