def detect_face(self, img, win): dets = detector(img, 1) if len(dets) == 0: raise NoFaces() largest_det = None l_sq = None for d in dets: win.add_overlay(d) sq = (d.right() - d.left()) * (d.top() - d.bottom()) sq = abs(sq) if largest_det is None or sq > l_sq: largest_det = d l_sq = sq d = largest_det print("Detection: Left: {} Top: {} Right: {} Bottom: {}".format( d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = sp(img, d) # Draw the face landmarks on the screen so we can see what face is currently being processed. win.add_overlay(shape, color=dlib.rgb_pixel(0, 255, 0)) face_descriptor = facerec.compute_face_descriptor(img, shape) self.faces.append(img) self.vecs.append(face_descriptor)
def show(self, out): if not self.wi: return wi = self.wi t, depthimage, colorimage, shape = out wi.set_image(colorimage) wi.clear_overlay() self.framecount += 1 if shape is not None: def topoint(dp): return dlib.point(dp.x, dp.y) if True: fobp = dlib.full_object_detection( shape.rect, [topoint(shape.part(i)) for i in range(shape.num_parts)]) #for jj in range(fobp.num_parts): if False: p = fobp.part(jj) if jj > self.framecount % 68: break self.wi.add_overlay_circle(dlib.dpoint(p.x, p.y), 2, color=dlib.rgb_pixel( 255, 255, 0)) wi.add_overlay(fobp)
def see_coins(img_path, boxes, cols): img = io.imread(img_path) #draw each box win = dlib.image_window() win.set_image(img) for i in np.arange(len(boxes)): win.add_overlay(boxes[i], color=dlib.rgb_pixel(cols[i][0], cols[i][1], cols[i][2])) #plt.figure() #plt.imshow(img) win.wait_until_closed()
def test_rgb_pixel(): p = rgb_pixel(0, 50, 100) assert p.red == 0 assert p.green == 50 assert p.blue == 100 assert str(p) == "red: 0, green: 50, blue: 100" assert repr(p) == "rgb_pixel(0,50,100)" p = rgb_pixel(blue=0, red=50, green=100) assert p.red == 50 assert p.green == 100 assert p.blue == 0 assert str(p) == "red: 50, green: 100, blue: 0" assert repr(p) == "rgb_pixel(50,100,0)" p.red = 100 p.green = 0 p.blue = 50 assert p.red == 100 assert p.green == 0 assert p.blue == 50 assert str(p) == "red: 100, green: 0, blue: 50" assert repr(p) == "rgb_pixel(100,0,50)"
def detect(self, file_): self.file = file_ for img in self.file: print('Processing image {}'.format(img)) img = dlib.load_rgb_image(img) dets = self.detector(img, 1) print('Number of faces detected: {}'.format(len(dets))) self.win.clear_overlay() self.win.set_image(img) self.win.set_title('Number of faces detected: {}'.format( len(dets))) self.win.add_overlay( dets, color=dlib.rgb_pixel(0, 0, 255), ) dlib.hit_enter_to_continue()
detector = dlib.simple_object_detector(detectors) print("upsampling = ", detector.upsampling_amount) detector.upsampling_amount = 1 #detector.save("combined_det.svm") #detector = dlib.simple_object_detector('combined_det.svm') detector_all = dlib.simple_object_detector('detector_all.svm') #detector_all = dlib.simple_object_detector('detector.svm') print("upsampling = ", detector.upsampling_amount) win = dlib.image_window() for f in sys.argv[1:]: print(f) img = dlib.load_rgb_image(f) dets = detector(img, 2) dets_all = detector_all(img, 2) #dets, scores, idxs = dlib.simple_object_detector.run_multiple(detectors, img, 2) # grow these rectangles slightly so they don't overlap dets in the image_window dets_all = [dlib.grow_rect(d, 1) for d in dets_all] win.clear_overlay() win.set_image(img) win.add_overlay(dets_all, dlib.rgb_pixel(0, 255, 0)) win.add_overlay(dets) input("hit enter to continue")
# Create a HOG face detector using the built-in dlib class face_detector = dlib.get_frontal_face_detector() win = dlib.image_window() # Load the image into an array image = io.imread(file_name) # Run the HOG face detector on the image data. # The result will be the bounding boxes of the faces in our image. detected_faces = face_detector(image, 1) print("Found {} faces in the file {}".format(len(detected_faces), file_name)) # Open a window on the desktop showing the image win.set_image(image) # Loop through each face we found in the image for i, face_rect in enumerate(detected_faces): # Detected faces are returned as an object with the coordinates # of the top, left, right and bottom edges print("- Face #{} found at Left: {} Top: {} Right: {} Bottom: {}".format( i, face_rect.left(), face_rect.top(), face_rect.right(), face_rect.bottom())) # Draw a box around each face we found win.add_overlay(face_rect, dlib.rgb_pixel(0, 255, 0)) # Wait until the user hits <enter> to close the window dlib.hit_enter_to_continue()
import sys import cv2 import dlib file = 'test.mp4' cap = cv2.VideoCapture(file) detector = dlib.get_frontal_face_detector() win = dlib.image_window() while True: ret, frame = cap.read() dets = detector(frame, 1) print('Number of faces detected: {}'.format(len(dets))) #for i, d in enumerate(dets): # print('Detection {}: Left: {} Top: {} Right: {} Bottom: {}'.format(i, d.left(), d.top(), d.right(), d.bottom())) win.clear_overlay() win.set_image(frame) win.set_title('Number of faces detected: {}'.format(len(dets))) win.add_overlay(dets, color=dlib.rgb_pixel(255, 255, 0))
#for (w, y0, y1, x0, x1) in squares: #shapes = dlib.full_object_detections() #for idx, d in enumerate(dets): if len(dets) == 0: tracker = None for d in dets: if tracker is None: tracker = dlib.correlation_tracker() tracker.start_track(image, d) win.add_overlay(d) else: tracker.update(image) pos = tracker.get_position() win.add_overlay(pos) win.add_overlay(d, color=dlib.rgb_pixel(0, 255, 0)) #d.rectangle(((x0,y0),(x1,y1)), outline = (0, 255, 0)) # #detd = dlib.rectangle(left=int(x0), top = int(y0), right = int(x1), bottom = int(y1)) #detd = d #shape = face_pose_predictor(image, detd) #shapes.append(face_pose_predictor(image, detd)) #win.add_overlay(shape) #win.add_overlay(detd) #facePred[0] = facerec.compute_face_descriptor(image, shape) #if (clf.predict(facePred)==1): #win.add_overlay(detd) #arrayToSave.append(face_descriptor) #print(face_descriptor) #lmFaces.append(shape)
image_file = sys.argv[2] detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) win = dlib.image_window() print("Processing file: {}".format(image_file)) img = dlib.load_rgb_image(image_file) win.clear_overlay() win.set_image(img) dets = detector(img, 2) print("Number of faces detected: {}".format(len(dets))) for index, det in enumerate(dets): print("Detection {}: LEFT: {}, TOP: {}, RIGHT: {}, BOTTOM: {}".format(index, det.left(), det.top(), det.right(), det.bottom())) shape = predictor(img, det) # when you want to visualize divided landmarks for marks, color in zip(landmarks , colors ): for i in marks: win.add_overlay_circle(shape.part(i), 1, dlib.rgb_pixel(color[2], color[1], color[0])) # when you jush want to see whole landmarks # win.add_overlay(shape) win.add_overlay(dets) dlib.hit_enter_to_continue()
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")): print("Processing file: {}".format(f)) img = dlib.load_rgb_image(f) win.clear_overlay() win.set_image(img) dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) for j in range(68): x, y = shape.part(j).x, shape.part(j).y win.add_overlay_circle(dlib.point(x, y), 1, dlib.rgb_pixel(0, 0, 255)) win.add_overlay(shape) win.add_overlay(dets) dlib.hit_enter_to_continue()
def draw_face_landmarks(self, image, dets=None, shapes=[], return_drawn_landmarks=False, draw_type="line"): print("\nDrawing face landmarks..\n") if not return_drawn_landmarks: win = dlib.image_window() win.set_image(image) if self.sp == self.shape_68_face_landmarks: face_landmarks_list = face_utils.FACIAL_LANDMARKS_68_IDXS else: face_landmarks_list = face_utils.FACIAL_LANDMARKS_5_IDXS if image is None: print("Please provide an image") exit() if dets is None: dets = self.detect_face(image=image) if len(shapes) == 0: shapes = self.detect_face_landmarks(image=image, dets=dets) # DOnly raw landmarks and display in dlib window if we are not returning the image if not return_drawn_landmarks: for shape in shapes: win.add_overlay(shape, dlib.rgb_pixel(0, 255, 0)) # Draw landmarks over the image using opencv line or circle to return the drawn image if return_drawn_landmarks: for shape in shapes: shape = face_utils.shape_to_np(shape) # Loop over the face parts individually for (name, (i, j)) in face_landmarks_list.items(): # Loop over the subset of facial landmarks, drawing the # specific face part px = None py = None for (x, y) in shape[i:j]: if draw_type == "line": if px is None and py is None: px, py = x, y cv2.line(image, (px, py), (x, y), (0, 255, 0), 2) px, py = x, y else: cv2.circle(image, (x, y), 1, (0, 0, 255), -1) return image else: dlib.hit_enter_to_continue() return image
diff = round(calculate_diff(normal_image, restored), 3) print(u'Восстановленное изображение отличается от оригинального ' u'на {p}%'.format(p=diff)) # Выполняем расчет и анализ антропометрических характеристик для # исходного и реконструированного ИЛ points, det = find_face_landmarks(normal_image) points_rest, det_rest = find_face_landmarks(restored) sum_distance = round(calculate_distance_between_landmarks(points, points_rest), 3) print(u'Сумма Евклидовых расстояний между антропометрическими точками: ' u'{s}'.format(s=sum_distance)) diff = detect_antro_diff(points, points_rest) columns = [ u'Высота лица', u'Ширина лица', u'Ширина глазной щели', u'Ширина носа', u'Ширина губ', u'Высота носа', u'Высота от нижней губы до верхней' ] rows = [u'Оригинал', u'Восстановленное', u'Разница', u'Разница %'] print(tabulate(diff, headers=columns, showindex=rows)) # Отображаем полученную антропометрику на исходном ИЛ для сравнения # Создаем объект окна dlib win = dlib.image_window() win.set_title("Face landmarks") win.clear_overlay() win.set_image(normal_image) # Исходные АПТ - синим цветом win.add_overlay(det) # АПТ реконструированного лица - красным цветом win.add_overlay(det_rest, color=dlib.rgb_pixel(255, 0, 0)) win.wait_until_closed()
json.load(f)) testboxes.append(list(imgboxes)) idx = 0 print("Showing detections on the images in the faces folder...") win = dlib.image_window() print("Processing file: {}".format(f)) img = testimages[idx] dets = detector(img) # print(dets) # print(boxes[0]) print("Number of faces detected: {}".format(len(dets))) win.clear_overlay() win.set_image(img) win.add_overlay(dets) color = dlib.rgb_pixel(0,255,0) win.add_overlay(testboxes[idx], color=color) dlib.hit_enter_to_continue() # Next, suppose you have trained multiple detectors and you want to run them # efficiently as a group. You can do this as follows: detector1 = dlib.fhog_object_detector("detector.svm") # In this example we load detector.svm again since it's the only one we have on # hand. But in general it would be a different detector. detector2 = dlib.fhog_object_detector("detector.svm") # make a list of all the detectors you wan to run. Here we have 2, but you # could have any number. detectors = [detector1, detector2] image = dlib.load_rgb_image(faces_folder + '/2008_002506.jpg') [boxes, confidences, detector_idxs] = dlib.fhog_object_detector.run_multiple(detectors, image, upsample_num_times=1, adjust_threshold=0.0)