def load_dataset(subset: Subset, augment=False) -> batches.BatchGenerator: dataset = PetsDataset('../data/cifar-10-batches-py', subset) ops_list = [] if augment: ops_list += [ops.hflip(), ops.rcrop(32, 12, 'constant')] ops_list += [ ops.mul(1 / 255), ops.type_cast(np.float32), # Imagenet: # ops.normalize( mean=np.array([0.485, 0.456, 0.406]), # std=np.array([0.229, 0.224, 0.225])), # Cifar-10: ops.normalize(mean=np.array([0.41477802, 0.45935813, 0.49693552]), std=np.array([0.25241926, 0.24699265, 0.25279155])), ops.hwc2chw() ] op = ops.chain(ops_list) return batches.BatchGenerator(dataset, 128, True, op)
from dlvc.dataset import Subset import dlvc.ops as ops np.random.seed(0) torch.manual_seed(0) DATA_PATH = "../cifar-10-batches-py/" MODEL_PATH = "best_model.pt" train_data = PetsDataset(DATA_PATH, Subset.TRAINING) val_data = PetsDataset(DATA_PATH, Subset.VALIDATION) op = ops.chain([ ops.type_cast(np.float32), ops.add(-127.5), ops.mul(1 / 127.5), ops.hflip(), ops.rcrop(32, 4, 'constant'), ops.add_noise(), ops.hwc2chw() ]) train_batches = BatchGenerator(train_data, 128, False, op) val_batches = BatchGenerator(val_data, 128, False, op) class Net(nn.Module): def __init__(self, img_size, num_classes): super(Net, self).__init__() self.img_size = img_size # Instantiate the ReLU nonlinearity