Beispiel #1
0
 def testBiasedRandomWalk(self, timescale):
   stdev = 1.
   variation = distributions.BiasedRandomWalk(stdev=stdev, timescale=timescale)
   sequence = [variation(random_state=self._variation_random_state)
               for _ in range(int(max(timescale, 1)*NUM_ITERATIONS*1000))]
   self.assertAlmostEqual(np.mean(sequence), 0., delta=0.01)
   self.assertAlmostEqual(np.std(sequence), stdev, delta=0.01)
 def testBiasedRandomWalkExceptions(self, arg_name, template):
     bad_value = -1.
     with self.assertRaisesWithLiteralMatch(ValueError,
                                            template.format(bad_value)):
         _ = distributions.BiasedRandomWalk(**{arg_name: bad_value})