def test_contact(self):
        walker = rodent.Rat()

        # Build a corridor-shaped arena that is obstructed by walls.
        arena = bowl.Bowl(size=(20., 20.), aesthetic='outdoor_natural')

        # Build a task that rewards the agent for running down the corridor at a
        # specific velocity.
        task = escape.Escape(walker=walker,
                             arena=arena,
                             physics_timestep=_PHYSICS_TIMESTEP,
                             control_timestep=_CONTROL_TIMESTEP)

        random_state = np.random.RandomState(12345)
        env = composer.Environment(task, random_state=random_state)
        env.reset()

        zero_action = np.zeros_like(env.physics.data.ctrl)

        # Walker starts in upright position.
        # Should not trigger failure termination in the first few steps.
        for _ in range(5):
            env.step(zero_action)
            self.assertFalse(task.should_terminate_episode(env.physics))
            np.testing.assert_array_equal(task.get_discount(env.physics), 1)
    def test_observables(self):
        walker = rodent.Rat()

        # Build a corridor-shaped arena that is obstructed by walls.
        arena = bowl.Bowl(size=(20., 20.), aesthetic='outdoor_natural')

        # Build a task that rewards the agent for running down the corridor at a
        # specific velocity.
        task = escape.Escape(walker=walker,
                             arena=arena,
                             physics_timestep=_PHYSICS_TIMESTEP,
                             control_timestep=_CONTROL_TIMESTEP)

        random_state = np.random.RandomState(12345)
        env = composer.Environment(task, random_state=random_state)
        timestep = env.reset()

        self.assertIn('walker/joints_pos', timestep.observation)
def rodent_escape_bowl(random_state=None):
    """Requires a rodent to climb out of a bowl-shaped terrain."""

    # Build a position-controlled rodent walker.
    walker = rodent.Rat(
        observable_options={'egocentric_camera': dict(enabled=True)})

    # Build a bowl-shaped arena.
    arena = bowl.Bowl(size=(20., 20.), aesthetic='outdoor_natural')

    # Build a task that rewards the agent for being far from the origin.
    task = escape.Escape(walker=walker,
                         arena=arena,
                         physics_timestep=_PHYSICS_TIMESTEP,
                         control_timestep=_CONTROL_TIMESTEP)

    return composer.Environment(time_limit=20,
                                task=task,
                                random_state=random_state,
                                strip_singleton_obs_buffer_dim=True)
Beispiel #4
0
def ant_escape_bowl(random_state=None):
    walker = ant.Ant()

    # Build a bowl-shaped arena.
    arena = bowl.Bowl(ground_size=(15., 15.),
                      hfield_size=(30, 30, 5),
                      terrain_smoothness=0.15,
                      terrain_bump_scale=2.0)

    # Build a task that rewards the agent for being far from the origin.
    task = escape.Escape(walker=walker,
                         arena=arena,
                         walker_spawn_position=(0, 0, 1.5),
                         physics_timestep=_PHYSICS_TIMESTEP,
                         control_timestep=_CONTROL_TIMESTEP)

    return composer.Environment(
        time_limit=30,  # 20
        task=task,
        random_state=random_state,
        strip_singleton_obs_buffer_dim=True)