Beispiel #1
0
    def _thunk():
        if callable(env_id):
            env = env_id()
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)

        return env
Beispiel #2
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            raise 'Atari not supported'

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(
                env,
                os.path.join(log_dir, str(rank)),
                allow_early_resets=allow_early_resets)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #3
0
    def _thunk():
        random_seed(seed)
        if 'diabcombolockhallway' == env_id:
            env = DiabolicalLockMaze(horizon=horizon, seed=seed, noise=noise)
        elif 'maze' == env_id:
            env = build_env_maze(horizon=100, size=20)            
        elif env_id.startswith("dm"):
            import dm_control2gym
            _, domain, task = env_id.split('-')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        if not 'combolock' in env_id:
            env.seed(seed + rank)
        env = OriginalReturnWrapper(env) #aggregate episode return
        if is_atari:
            env = wrap_deepmind(env,
                                episode_life=episode_life,
                                clip_rewards=False,
                                frame_stack=False,
                                scale=False)
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3:
                env = TransposeImage(env)
            env = FrameStack(env, 4)

        return env
Beispiel #4
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        elif env_id in ['duckietown']:
            from a2c_ppo_acktr.duckietown.env import launch_env
            from a2c_ppo_acktr.duckietown.wrappers import NormalizeWrapper, ImgWrapper,\
                 DtRewardWrapper, ActionWrapper, ResizeWrapper
            from a2c_ppo_acktr.duckietown.teacher import PurePursuitExpert
            env = launch_env()
            env = ResizeWrapper(env)
            env = NormalizeWrapper(env)
            env = ImgWrapper(env)
            env = ActionWrapper(env)
            env = DtRewardWrapper(env)
        elif env_id in retro_envs:
            env = make_retro(game=env_id)
            #env = SuperMarioKartDiscretizer(env)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id, max_episode_steps=max_steps)

        env.seed(seed + rank)

        #TODO: Figure out what todo here
        if is_atari:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif env_id in retro_envs:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind_retro(env, frame_stack=0)
        elif len(env.observation_space.shape) == 3:
            if env_id not in ['duckietown'] and env_id not in retro_envs:
                raise NotImplementedError(
                    "CNN models work only for atari,\n"
                    "please use a custom wrapper for a custom pixel input env.\n"
                    "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        if env_id not in ['duckietown']:
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
                env = TransposeImage(env, op=[2, 0, 1])

        if time:
            env = TimeFeatureWrapper(env)

        return env
Beispiel #5
0
    def _thunk():
        if "mario" in env_id:
            env = gym_super_mario_bros.make('SuperMarioBros-v0')
            env = JoypadSpace(env, SIMPLE_MOVEMENT)
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)
        if log_dir is not None:
            env = bench.Monitor(env, os.path.join(log_dir, str(rank)))
        if is_atari:
            env = wrap_deepmind(env, clip_rewards=False)
        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if "mario" in env_id:
            env = wrap_deepmind(env, clip_rewards=False, episode_life=False)
            env = WrapPyTorchMario(env)
        elif len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = WrapPyTorch(env)

        return env
    def _thunk():
        if env_id.startswith("Pomme"):
            env = envs.pommerman.make_env(env_id)
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)

        obs_shape = env.observation_space.shape
        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = Monitor(env,
                          os.path.join(log_dir, str(rank)),
                          allow_early_resets=allow_early_resets)

        if is_atari:
            env = wrap_deepmind(env)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env)

        return env
Beispiel #7
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = env

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #8
0
    def _thunk():
        # I think this is not needed
        # random_seed(seed)
        if env_id.startswith("dm"):
            import dm_control2gym
            _, domain, task = env_id.split('-')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            # My code for reacher env:
            if env_id == 'reacher':
                # from gym_unity.envs.unity_env import UnityEnv
                # from p2_continuous_control.unity_env import UnityEnv
                # env = UnityEnv('p2_continuous_control/Reacher_Linux/Reacher.x86_64')
                env = make_reacher()
            else:
                env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)
        env = OriginalReturnWrapper(env)
        if is_atari:
            env = wrap_deepmind(env,
                                episode_life=episode_life,
                                clip_rewards=False,
                                frame_stack=False,
                                scale=False)
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3:
                env = TransposeImage(env)
            env = FrameStack(env, 4)

        return env
    def _thunk():
        if env_id == 'StockGame':
            env = StockGame('603399', '2017-01-01', '2017-07-10', 100000.0)
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)

        obs_shape = env.observation_space.shape
        if add_timestep and len(obs_shape) == 1 \
            and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = bench.Monitor(env, os.path.join(log_dir, str(rank)))

        if is_atari:
            env = wrap_deepmind(env)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = WrapPyTorch(env)

        return env
Beispiel #10
0
    def _thunk():
        random_seed(seed)
        if env_id.startswith("dm"):
            import dm_control2gym
            _, domain, task = env_id.split('-')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)

        if log_dir is not None:
            # env = Monitor(env=env, filename=os.path.join(log_dir, str(rank)), allow_early_resets=True)
            env = bench.Monitor(env=env,
                                filename=os.path.join(log_dir, str(rank)),
                                allow_early_resets=True)
        if is_atari:
            env = wrap_deepmind(env,
                                episode_life=episode_life,
                                clip_rewards=False,
                                frame_stack=False,
                                scale=False)
            if not episode_life and 'FIRE' in env.unwrapped.get_action_meanings(
            ):
                env = LifeFireEnv(env)
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3:
                env = TransposeImage(env)
            env = FrameStack(env, stack_size)

        return env
Beispiel #11
0
    def _thunk():
        if callable(env_id):
            env = env_id()
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = gym.make(env_id)
            env = gym.wrappers.AtariPreprocessing(env)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            # env = gym.wrappers.Monitor(env, os.path.join(log_dir, str(rank)), force=True)
            pass

        if is_atari:
            if len(env.observation_space.shape) == 3:
                # TODO: implement same preprocessing as in deepmind
                # env = wrap_deepmind(env)
                pass

        return env
Beispiel #12
0
    def _thunk():
        random_seed(seed)
        if env_id.startswith("dm"):
            import dm_control2gym
            _, domain, task = env_id.split('-')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)
        env = OriginalReturnWrapper(env)
        if is_atari:
            env = wrap_deepmind(env,
                                episode_life=episode_life,
                                clip_rewards=False,
                                frame_stack=False,
                                scale=False)
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3:
                env = TransposeImage(env)
            env = FrameStack(env, 4)

        return env
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        elif 'Mini' in env_id:
            import gym_minigrid
            env = gym_minigrid.envs.dynamicobstacles.DynamicObstaclesEnv(
                size=5, n_obstacles=1)
            # env = gym_minigrid.envs.multiroom.MultiRoomEnv(
            #     minNumRooms=2, maxNumRooms=2, maxRoomSize=4
            # )
            # import pdb; pdb.set_trace()
            # env = gym.make(env_id)
            # env = gym_minigrid.wrappers.NoOpAsync(env, costs=[2, 1])
            env = gym_minigrid.wrappers.NoOpAsync(env,
                                                  costs=[2, 1],
                                                  which_obs='first')

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        is_minigrid = 'minigrid' in env_id.lower()

        env.seed(seed + rank)

        if is_minigrid:
            from gym_minigrid.wrappers import ImgObsWrapper, RGBImgObsWrapper, RGBImgPartialObsWrapper, FlatObsWrapper
            # env = RGBImgPartialObsWrapper(
            #     env, tile_size=2)
            # env = ImgObsWrapper(env)
            env = FlatObsWrapper(env)
            # env.observation_space = env.observation_space['image']

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif is_minigrid:
            pass
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #14
0
def make_dm2gym_env_obs(env_name="cheetah_run", num_repeat_action=1):
    """ Invoke POMDP tasks """
    env_name_tuple = DM_TASKS[env_name.lower()]
    domain_name, task_name = env_name_tuple[0], env_name_tuple[1]
    env = dm_control2gym.make(domain_name=domain_name, task_name=task_name)
    env = PixelObservationWrapper(env=env)
    env = wrap_deepmind(env=env, num_repeat_action=num_repeat_action)
    return env
Beispiel #15
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        # ss('sss')
        env = env.env
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        # print(hasattr(gym.envs, 'atari'))
        # print(gym.envs)
        # print(getattr(gym.envs, 'atari'))
        # print('- - '*20)
        # print(env.unwrapped)
        # print(gym.envs.atari.atari_env.AtariEnv)
        # # print(gym.envs.atari.atari_env.AtariEnv)
        # print(isinstance(
        #     env.unwrapped, gym.envs.atari.atari_env.AtariEnv))
        # print(is_atari)
        # ss('sss')
        # if is_atari:
        #
        #     env = make_atari(env_id)
        #     ss('make atari')

        env.seed(seed + rank)

        # obs_shape = env.observation_space.shape
        # print(str(env.__class__.__name__))
        # ss('name')
        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            # print('hiosdfoi '* 30)
            env = TimeLimitMask(env)

        # if log_dir is not None:
        #     env = bench.Monitor(
        #         env,
        #         os.path.join(log_dir, str(rank)),
        #         allow_early_resets=allow_early_resets)

        # if is_atari:
        #     if len(env.observation_space.shape) == 3:
        #         env = wrap_deepmind(env)
        # elif len(env.observation_space.shape) == 3:
        #     raise NotImplementedError(
        #         "CNN models work only for atari,\n"
        #         "please use a custom wrapper for a custom pixel input env.\n"
        #         "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        # print(obs_shape)
        # ss('is atari')
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #16
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        elif 'academy' in env_id or '11' in env_id:  # gfootball environments
            #env = football_env.create_environment(
            #          env_name=env_id, stacked=('stacked' in state),
            #          with_checkpoints=('with_checkpoints' in reward_experiment),
            #          logdir=log_dir,
            #          enable_goal_videos=dump_scores and (seed == 0),
            #          enable_full_episode_videos=dump_full_episodes and (seed == 0),
            #          render=render and (seed == 0),
            #          dump_frequency=50 if render and seed == 0 else 0,
            #          representation='extracted')
            env = football_env.create_environment(
                env_name=env_id,
                stacked=('stacked' in state),
                rewards=reward_experiment,
                logdir=log_dir,
                render=render and (seed == 0),
                dump_frequency=50 if render and seed == 0 else 0)
            env = EpisodeRewardScoreWrapper(
                env,
                number_of_left_players_agent_controls=1,
                number_of_right_players_agent_controls=0)

        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env, frame_stack=True)
        elif len(env.observation_space.shape
                 ) == 3 and 'academy' not in env_id and '11' not in env_id:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])
        return env
Beispiel #17
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        if obs_keys is not None:
            env = gym.wrappers.FlattenDictWrapper(env, dict_keys=obs_keys)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        # if str(env.__class__.__name__).find('TimeLimit') >= 0:
        #     env = TimeLimitMask(env)

        if log_dir is not None:
            if save_video:
                env = bench.Monitor(env,
                                    os.path.join(log_dir + '/eval/monitor',
                                                 str(rank)),
                                    allow_early_resets=allow_early_resets)

                env = gym.wrappers.Monitor(env,
                                           os.path.join(
                                               log_dir + '/eval/video',
                                               str(rank)),
                                           force=True)
            else:
                env = bench.Monitor(env,
                                    os.path.join(log_dir + '/monitor',
                                                 str(rank)),
                                    allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #18
0
    def __init__(self, domain_name, task_name, log_dir=None):
        from dm_control import suite
        import dm_control2gym
        BaseTask.__init__(self)

        self.name = domain_name + '_' + task_name
        self.env = dm_control2gym.make(domain_name, task_name)

        self.action_dim = self.env.action_space.shape[0]
        self.state_dim = self.env.observation_space.shape[0]
        self.env = self.set_monitor(self.env, log_dir)
Beispiel #19
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.configure(config)

        envSeed = seed + rank if seed is not None else None
        # environment.render_axis = ax
        env.thisSeed = envSeed
        env.nenv = envNum
        if envNum > 1:
            env.phase = 'train'
        else:
            env.phase = 'test'

        if ax:
            env.render_axis = ax
            if test_case >= 0:
                env.test_case = test_case
        env.seed(seed + rank)

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        # if log_dir is not None:
        env = bench.Monitor(env, None, allow_early_resets=allow_early_resets)
        print(env)

        if isinstance(env.observation_space, Box):
            if is_atari:
                if len(env.observation_space.shape) == 3:
                    env = wrap_deepmind(env)
            elif len(env.observation_space.shape) == 3:
                raise NotImplementedError(
                    "CNN models work only for atari,\n"
                    "please use a custom wrapper for a custom pixel input env.\n"
                    "See wrap_deepmind for an example.")

            # If the input has shape (W,H,3), wrap for PyTorch convolutions

            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
                env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #20
0
    def _thunk():
        if env_id.startswith("Sawyer"):
            env = robosuite.make(
                env_id,
                has_renderer=False,
                has_offscreen_renderer=False,
                ignore_done=False,
                horizon=1000,  #200,
                use_camera_obs=False,
                gripper_visualization=False,
                reward_shaping=True,
                control_freq=100  #10, # 100
            )
            env = GymGymWrapper(env)
        elif env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #21
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        # minigrid
        keep_classes = ['agent', 'goal', 'wall', 'empty']
        if 'key' in env_id.lower():
            keep_classes.extend(['door', 'key'])

        if env_id.startswith('MiniGrid'):
            env = mgwr.FullyObsWrapper(env)
            env = mgwr.ImgObsWrapper(env)
            env = mgwr.FullyObsOneHotWrapper(env,
                                             drop_color=1,
                                             keep_classes=keep_classes,
                                             flatten=False)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            if env_id.startswith('CarRacing'):
                env = WarpFrame(env, width=96, height=96, grayscale=True)
                env = ScaledFloatFrame(env)
            else:
                raise NotImplementedError

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #22
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)

        elif env_id == "tetris_single":
            env = TetrisSingleEnv(obs_type=obs_type, mode=mode)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        # if log_dir is not None:
        #     env = bench.Monitor(
        #         env,
        #         os.path.join(log_dir, str(rank)),
        #         allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif env_id.startswith("tetris"):
            # env = wrap_deepmind(env, episode_life=False, clip_rewards=False, frame_stack=False, scale=False)
            # env = NoopResetEnv(env, noop_max=30)
            env = MaxAndSkipEnv(env, skip=skip_frames)
            # pass
            if obs_type == "image":
                env = WarpFrame(env, 224, 224)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #23
0
    def _thunk():
        if env_id.find("doorenv") > -1:
            env = gym.make(env_id, **env_kwargs)  #
            env._max_episode_steps = 512
            if env_kwargs['unity']:
                env.env.init(rank)
        elif env_id.find('Fetch') > -1:
            env = gym.make(env_id, reward_type="sparse")
            env = gym.wrappers.FlattenDictWrapper(
                env, dict_keys=['observation', 'desired_goal'])
        else:
            if env_id.startswith("dm"):
                _, domain, task = env_id.split('.')
                env = dm_control2gym.make(domain_name=domain, task_name=task)
            else:
                env = gym.make(env_id)
                env._max_episode_steps = 512
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #24
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
            if 'gameoflife' in env_id.lower():
               #print("ENV RANK: ", rank)
                power_puzzle = False
               #if args.power_puzzle:
               #    power_puzzle = True
                if rank == 0:
                    render = render_gui
                else:render = False
                env.configure(map_width=map_width, render=render)
               #env.setMapSize(map_width, print_map=print_map, render_gui=render, empty_start=not args.random_terrain, max_step=max_step, rank=rank, simple_reward=simple_reward, power_puzzle=power_puzzle)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = MicropolisMonitor(env, os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)
            
           #print(log_dir)
           # 
           #print(type(env))
           #print(dir(env))
           #raise Exception

        if is_atari:
            env = wrap_deepmind(env)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env)

        return env
Beispiel #25
0
    def _thunk():
        #print("Make envs", params)
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id, **TspParams.current().ENVIRONMENT_KWARGS)

        is_atari = (hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv))
        if is_atari:
            env = make_atari(env_id)

        is_minigrid = "MiniGrid" in env_id

        if set_time_limit is not None:
            env = TimeLimit(env, set_time_limit)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find(
                'TimeLimit') >= 0 or set_time_limit is not None:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif is_minigrid:
            pass
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #26
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = NoopResetEnv(env, noop_max=30)
            env = MaxAndSkipEnv(env, skip=4)

        env.seed(seed + rank)

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = Monitor(
                env,
                os.path.join(log_dir, str(rank)),
                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = EpisodicLifeEnv(env)
                if "FIRE" in env.unwrapped.get_action_meanings():
                    env = FireResetEnv(env)
                env = WarpFrame(env, width=84, height=84)
                env = ClipRewardEnv(env)
        elif len(env.observation_space.shape) == 3:
            # env = EpisodicLifeEnv(env)
            # if 'FIRE' in env.unwrapped.get_action_meanings():
            #     env = FireResetEnv(env)
            env = WarpFrame(env, width=64, height=64)

            # raise NotImplementedError(
            #     "CNN models work only for atari,\n"
            #     "please use a custom wrapper for a custom pixel input env.\n"
            #     "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env
Beispiel #27
0
def make_env(args):
    if args.env_type == 'dmc':
        import dm_control2gym
        env = dm_control2gym.make(
            domain_name=args.domain_name,
            task_name=args.task_name,
            task_kwargs={'random': args.seed},
            visualize_reward=True)
    elif args.env_type == 'mjc':
        from pointmass import point_mass
        env = gym.make(args.env_name)
    elif args.env_type == 'ant':
        import ant_env_mujoco
        env = gym.make(args.env_name)
    else:
        assert 'unknown env type: %s' % args.env_type
    return env
Beispiel #28
0
    def __init__(self,
                 domain_name,
                 task_name,
                 max_steps=sys.maxsize,
                 log_dir=None):
        from dm_control import suite
        import dm_control2gym
        BasicTask.__init__(self, max_steps)

        self.name = domain_name + '_' + task_name
        self.env = dm_control2gym.make(domain_name, task_name)

        self.action_dim = self.env.action_space.shape[0]
        self.state_dim = self.env.observation_space.shape[0]
        if log_dir is not None:
            mkdir(log_dir)
            self.env = Monitor(self.env, '%s/%s' % (log_dir, uuid.uuid1()))
Beispiel #29
0
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
            if 'micropolis' in env_id.lower():
                print("ENV RANK: ", rank)
                if rank == 0:
                    env.setMapSize(map_width,
                                   print_map=print_map,
                                   parallel_gui=parallel_py2gui,
                                   render_gui=render_gui,
                                   empty_start=True,
                                   noreward=noreward,
                                   max_step=max_step,
                                   rank=rank)
                else:
                    env.setMapSize(map_width, rank=rank)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=allow_early_resets)

        if is_atari:
            env = wrap_deepmind(env)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env)

        return env
Beispiel #30
0
    def _thunk():
        print("CUSTOM GYM:", custom_gym)
        if custom_gym is not None and custom_gym != "":
            module = importlib.import_module(custom_gym, package=None)
            print("imported env '{}'".format((custom_gym)))

        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        if not is_atari and scale_img:
            env = WarpFrame(env, color_img)

        if duckietown:
            env = DuckietownRewardWrapper(env)
            if dt_discrete:
                env = DuckietownDiscreteWrapper(env)

        env = Normalize(env)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape
        if add_timestep and len(
                obs_shape) == 1 and str(env).find('TimeLimit') > -1:
            env = AddTimestep(env)

        if log_dir is not None:
            env = bench.Monitor(env,
                                os.path.join(log_dir, str(rank)),
                                allow_early_resets=True)
        if is_atari:
            env = wrap_deepmind(env)

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = WrapPyTorch(env)

        return env