def _save_image(train_data, feature, gene_output, batch, suffix, max_samples=None): """Saves a picture showing the current progress of the model""" if max_samples is None: max_samples = int(feature.shape[0]) td = train_data clipped = np.clip(gene_output, 0, 1) image = np.concatenate([feature, clipped], 2) image = image[:max_samples,:,:,:] cols = [] num_cols = 4 samples_per_col = max_samples//num_cols for c in range(num_cols): col = np.concatenate([image[samples_per_col*c + i,:,:,:] for i in range(samples_per_col)], 0) cols.append(col) image = np.concatenate(cols, 1) filename = 'batch%06d_%s.png' % (batch, suffix) filename = os.path.join(FLAGS.train_dir, filename) dm_utils.save_image(image, filename)
def inference(infer_data): sess = infer_data.sess idm = infer_data.infer_model image = sess.run(idm.gene_out) image = np.squeeze(image, axis=0) dm_utils.save_image(image, FLAGS.outfile)