def bound(self, state): c, r, a = self.center_radius_angle(state.m) # Use derivative of ellipse equation to find angle of min max points tx = dmath.atan2(-r[1] * dmath.sin(a[0]), -r[0] * dmath.cos(a[0])) ty = dmath.atan2(r[1] * dmath.cos(a[0]), -r[0] * dmath.sin(a[0])) # plug those numbers back into the ellipse equations dx = dmath.fabs(r[0] * dmath.cos(tx) * dmath.cos(a[0]) - r[1] * dmath.sin(tx) * dmath.sin(a[0])) dy = dmath.fabs(r[0] * dmath.cos(ty) * dmath.sin(a[0]) + r[1] * dmath.sin(ty) * dmath.cos(a[0])) return ((c[0] - dx, c[1] - dy), (c[0] + dx, c[1] + dy))
def __init__(self, argument): from cas.numeric import Integer Function.__init__(self, 'cos', argument, action=lambda x: dmath.cos(x) if isinstance(x, (Decimal, Integer)) else math.cos(x))
def __init__(self, r, sweep=None): super(circle, self).__init__() r = D(r) self.points.append((D(0), D(0))) self.points.append((r, D(0))) self.points.append((D(0), r)) if sweep is not None: assert sweep > 0 and sweep < 360 sweep = dmath.radians(D(sweep)) self.points.append((dmath.cos(sweep) * r, dmath.sin(sweep) * r)) self.full = sweep is None
def rect_pad(self, name, points, rounded, state): m = [] ret = [] for i in range(len(points)): p0, p1 = points[i], points[(i + 1) % len(points)] m.append(((p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2)) dim0 = dmath.hypot(m[2][0] - m[0][0], m[2][1] - m[0][1]) dim1 = dmath.hypot(m[3][0] - m[1][0], m[3][1] - m[1][1]) c = ((m[0][0] + m[2][0]) / 2, (m[0][1] + m[2][1]) / 2) if dim0.quantize(D("0.000001")) == dim1.quantize(D("0.000001")): if rounded: ret.append(circ_pad(name, c, dim0 / 2), state) else: ret += self.rect_pad(name, [ points[0], points[1], m[1], m[3] ], False, state) ret += self.rect_pad(name, [ m[3], m[1], points[2], points[3] ], False, state) return ret if dim0 > dim1: angle = dmath.atan2(m[2][1] - m[0][1], m[2][0] - m[0][0]) else: angle = dmath.atan2(m[3][1] - m[1][1], m[3][0] - m[1][0]) flags = [] if not rounded: flags.append("square") if state.get_onsolder(): flags.append("onsolder") if not state.get_paste(): flags.append("nopaste") thickness = min(dim0, dim1) / 2 width = max(dim0, dim1) - thickness * 2 p = [] p.append((c[0] + dmath.cos(angle) * width / 2, c[1] + dmath.sin(angle) * width / 2)) p.append((c[0] - dmath.cos(angle) * width / 2, c[1] - dmath.sin(angle) * width / 2)) ret.append("""Pad [ %s %s %s %s %s %s %s "%s" "%s" "%s" ]""" % ( P(p[0][0]), P(p[0][1]), P(p[1][0]), P(p[1][1]), P(thickness * 2), P(self.clearance * 2), P((self.mask + thickness) * 2), name, name, ",".join(flags))) return ret
h = D2 * a / d dr = Vec(x1 - x0, y1 - y0) dx = vscale(sqrt(r0 ** 2 - h ** 2), vnorm(dr)) ang = vangle(dr) if \ r0 ** 2 + d ** 2 > r1 ** 2 \ else pi + vangle(dr) da = asin(h / r0) return map(anorm, [ang - da, ang + da]) # Angles of the start and end points of the circle arc. Angle2 = namedtuple("Angle2", "a1 a2") Arc = namedtuple("Arc", "c aa") arcPoint = lambda (x, y, r), a: \ vadd(Vec(x, y), Vec(r * cos(a), r * sin(a))) arc_start = lambda (c, (a0, a1)): arcPoint(c, a0) arc_mid = lambda (c, (a0, a1)): arcPoint(c, (a0 + a1) / D2) arc_end = lambda (c, (a0, a1)): arcPoint(c, a1) arc_center = lambda ((x, y, r), _): Vec(x, y) arc_area = lambda ((_0, _1, r), (a0, a1)): r ** 2 * (a1 - a0) / D2 def split_circles(cs): cSplit = lambda (c, angs): \ imap(Arc, repeat(c), imap(Angle2, angs, angs[1:])) # If an arc that was part of one circle is inside *another* circle, # it will not be part of the zero-winding path, so reject it. in_circle = lambda ((x0, y0), c), (x, y, r): \
def test_cos(): for x in range(-10, 10): assert dmath.cos(x) == math.cos(x) assert grad(dmath.cos)(x) == -math.sin(x)
def f_prime(x, y): return (cos(x) * cos(y), -sin(x) * sin(y))
def f(x, y): return sin(x) * cos(y)
def g_prime(x): return 2 * x * cos(x**2)
def __init__(self, a): super(rotate, self).__init__() a = dmath.radians(D(a)) self.m[0,0] = self.m[1,1] = D(dmath.cos(a)) self.m[0,1] = D(dmath.sin(a)) self.m[1,0] = -D(dmath.sin(a))