Beispiel #1
0
def _objective_AW2S_MDL(trial, train, changepoints, tolerance_delay):
    window_size = trial.suggest_int('window_size', 10, 500)
    sigma_given = trial.suggest_uniform('sigma_given', 0.1, 2)

    nml_gaussian = partial(sdmdl_nml.nml_gaussian,
                           mu_max=1e8,
                           div_min=1e-8,
                           div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian,
                                  mu_max=1e8,
                                  div_min=1e-8,
                                  div_max=1e8)
    retrospective_first = sdmdl.Retrospective(
        h=window_size,
        encoding_func=nml_gaussian,
        complexity_func=complexity_gaussian,
        order=0)

    lnml_gaussian = partial(hsdmdl2_nml.lnml_gaussian, sigma_given=sigma_given)
    retrospective_second = hsdmdl2.Retrospective(encoding_func=lnml_gaussian,
                                                 d=2,
                                                 M=5,
                                                 min_datapoints=5,
                                                 delta_0=0.05,
                                                 delta_1=0.05,
                                                 delta_2=0.05,
                                                 how_to_drop='all',
                                                 order=0,
                                                 reliability=True)

    retrospective = aw2s_mdl.Retrospective(retrospective_first,
                                           retrospective_second)

    alarms = retrospective.make_alarms(train)
    scores = np.zeros(len(train))
    scores[alarms] = 1

    F1_score, _, _ = calc_F1_score(scores,
                                   changepoints,
                                   tolerance_delay,
                                   tuned_threshold=0.5)

    return -F1_score
Beispiel #2
0
def _objective_Hierarchical(trial, train, changepoints, tolerance_delay,
                            order):
    nml_gaussian = partial(hsdmdl2_nml.nml_gaussian)
    min_datapoints = 5

    # delta_0だけはいかなる場合でもチューニングしなければならない
    delta_0 = trial.suggest_uniform('delta_0', 0.000001, 10.00)

    if order == 1:
        delta_1 = trial.suggest_uniform('delta_1', 0.000001, 1.00)
    else:
        delta_1 = 0.05

    if order == 2:
        delta_2 = trial.suggest_uniform('delta_2', 0.000001, 1.00)
    else:
        delta_2 = 0.05

    retrospective = hsdmdl2.Retrospective(encoding_func=nml_gaussian,
                                          d=2,
                                          M=5,
                                          min_datapoints=min_datapoints,
                                          delta_0=delta_0,
                                          delta_1=delta_1,
                                          delta_2=delta_2,
                                          how_to_drop='all',
                                          order=order,
                                          reliability=True)
    alarms = retrospective.make_alarms(train)

    scores = np.zeros(len(train))
    scores[alarms] = 1

    F1_score, _, _ = calc_F1_score(scores,
                                   changepoints,
                                   tolerance_delay,
                                   tuned_threshold=0.5)

    return -F1_score
Beispiel #3
0
def conduct_AW2S_MDL(n_trials, n_samples, dataset, changepoints,
                     tolerance_delay):  # AW2S-MDL
    # hyperparameter tuning
    objective_AW2S_MDL = partial(_objective_AW2S_MDL,
                                 train=dataset[0],
                                 changepoints=changepoints,
                                 tolerance_delay=tolerance_delay)
    study = optuna.create_study()
    study.optimize(objective_AW2S_MDL, n_trials=n_trials, n_jobs=-1)

    opt_window_size = study.best_params['window_size']
    opt_sigma_given = study.best_params['sigma_given']

    nml_gaussian = partial(sdmdl_nml.nml_gaussian,
                           mu_max=1e8,
                           div_min=1e-8,
                           div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian,
                                  mu_max=1e8,
                                  div_min=1e-8,
                                  div_max=1e8)
    retrospective_first = sdmdl.Retrospective(
        h=opt_window_size,
        encoding_func=nml_gaussian,
        complexity_func=complexity_gaussian,
        order=0)

    lnml_gaussian = partial(hsdmdl2_nml.lnml_gaussian,
                            sigma_given=opt_sigma_given)
    retrospective_second = hsdmdl2.Retrospective(encoding_func=lnml_gaussian,
                                                 d=2,
                                                 M=5,
                                                 min_datapoints=5,
                                                 delta_0=0.05,
                                                 delta_1=0.05,
                                                 delta_2=0.05,
                                                 how_to_drop='all',
                                                 order=0,
                                                 reliability=True)

    retrospective = aw2s_mdl.Retrospective(retrospective_first,
                                           retrospective_second)

    # calculate metrics
    calc_metrics = partial(_calc_AW2S_MDL_metrics,
                           dataset=dataset,
                           changepoints=changepoints,
                           tolerance_delay=tolerance_delay,
                           threshold=0.5,
                           retrospective=retrospective)
    p = Pool(multi.cpu_count() - 1)
    args = list(range(1, n_samples))
    res = np.array(p.map(calc_metrics, args))
    p.close()

    # result
    print("F1 score:  ", np.mean(res[:, 0]), "±", np.std(res[:, 0]))
    print("precision:  ", np.mean(res[:, 1]), "±", np.std(res[:, 1]))
    print("recall:  ", np.mean(res[:, 2]), "±", np.std(res[:, 2]))

    row = pd.DataFrame({
        "method": ["AW2S_MDL"],
        "F1_score_mean": np.mean(res[:, 0]),
        "F1_score_std": np.std(res[:, 0]),
        "precision_mean": np.mean(res[:, 1]),
        "precision_std": np.std(res[:, 1]),
        "recall_mean": np.mean(res[:, 2]),
        "recall_std": np.std(res[:, 2])
    })

    return row
Beispiel #4
0
def conduct_Hierarchical(n_trials, n_samples, dataset, changepoints,
                         tolerance_delay, order):  # Hierarchical
    # hyperparameter tuning
    objective_Hierarchical = partial(_objective_Hierarchical,
                                     train=dataset[0],
                                     changepoints=changepoints,
                                     tolerance_delay=tolerance_delay,
                                     order=order)
    study = optuna.create_study()
    study.optimize(objective_Hierarchical, n_trials=n_trials, n_jobs=-1)

    opt_delta_0 = study.best_params['delta_0']

    if order == 1:
        opt_delta_1 = study.best_params['delta_1']
    else:
        opt_delta_1 = 0.05

    if order == 2:
        opt_delta_2 = study.best_params['delta_2']
    else:
        opt_delta_2 = 0.05

    min_datapoints = 5
    nml_gaussian = partial(hsdmdl2_nml.nml_gaussian)
    retrospective = hsdmdl2.Retrospective(encoding_func=nml_gaussian,
                                          d=2,
                                          M=5,
                                          min_datapoints=min_datapoints,
                                          delta_0=opt_delta_0,
                                          delta_1=opt_delta_1,
                                          delta_2=opt_delta_2,
                                          how_to_drop='all',
                                          order=True,
                                          reliability=True)

    # calculate metrics
    calc_metrics = partial(_calc_Hierarchical_metrics,
                           dataset=dataset,
                           changepoints=changepoints,
                           tolerance_delay=tolerance_delay,
                           threshold=0.5,
                           retrospective=retrospective,
                           order=order)
    p = Pool(multi.cpu_count() - 1)
    args = list(range(1, n_samples))
    res = np.array(p.map(calc_metrics, args))
    p.close()

    # result
    print("F1 score:  ", np.mean(res[:, 0]), "±", np.std(res[:, 0]))
    print("precision:  ", np.mean(res[:, 1]), "±", np.std(res[:, 1]))
    print("recall:  ", np.mean(res[:, 2]), "±", np.std(res[:, 2]))

    method_name = "Hierarchical"
    if order == 0:
        method_name += "_0th"
    elif order == 1:
        method_name += "_1st"
    else:
        method_name += "_2nd"

    row = pd.DataFrame({
        "method": [method_name],
        "F1_score_mean": np.mean(res[:, 0]),
        "F1_score_std": np.std(res[:, 0]),
        "precision_mean": np.mean(res[:, 1]),
        "precision_std": np.std(res[:, 1]),
        "recall_mean": np.mean(res[:, 2]),
        "recall_std": np.std(res[:, 2])
    })

    return row
def test_main():
    np.random.seed(0)

    tolerance_delay = 100
    transition_period = 200
    data, changepoints = one_mean_changing(transition_period=transition_period)

    name = "ChangeFinder"
    retrospective = changefinder.Retrospective(r=0.1, order=5, smooth=5)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "BOCPD"
    h = partial(bocpd.constant_hazard, 1000)
    lik = bocpd.StudentT(0.5, 5, 5, 0)
    retrospective = bocpd.Retrospective(hazard_func=h, likelihood_func=lik)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "SDMDL_0th"
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                        complexity_func=complexity_gaussian, order=0)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "SDMDL_1st"
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                        complexity_func=complexity_gaussian, order=1)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "SDMDL_2nd"
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                        complexity_func=complexity_gaussian, order=2)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW1_0th"
    lnml_gaussian = partial(hsdmdl1_nml.lnml_gaussian)
    retrospective = hsdmdl1.Retrospective(encoding_func=lnml_gaussian, d=2, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=0, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW1_1st"
    lnml_gaussian = partial(hsdmdl1_nml.lnml_gaussian)
    retrospective = hsdmdl1.Retrospective(encoding_func=lnml_gaussian, d=2, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=1, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW1_2nd"
    lnml_gaussian = partial(hsdmdl1_nml.lnml_gaussian)
    retrospective = hsdmdl1.Retrospective(encoding_func=lnml_gaussian, d=2, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=2, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW2_0th"
    nml_gaussian = partial(hsdmdl2_nml.nml_gaussian)
    retrospective = hsdmdl2.Retrospective(encoding_func=nml_gaussian, d=2, M=5, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=0, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW2_1st"
    nml_gaussian = partial(hsdmdl2_nml.nml_gaussian)
    retrospective = hsdmdl2.Retrospective(encoding_func=nml_gaussian, d=2, M=5, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=1, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "Hierarchical_SCAW2_2nd"
    nml_gaussian = partial(hsdmdl2_nml.nml_gaussian)
    retrospective = hsdmdl2.Retrospective(encoding_func=nml_gaussian, d=2, M=5, min_datapoints=5, delta_0=0.05,
                                          delta_1=0.05, delta_2=0.05, how_to_drop='all', order=2, reliability=True)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "FW2S_MDL"
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective_first = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                              complexity_func=complexity_gaussian, order=0)
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective_second = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                               complexity_func=complexity_gaussian, order=0)
    retrospective = fw2s_mdl.Retrospective(
        retrospective_first, retrospective_second)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)

    name = "AW2S_MDL"
    nml_gaussian = partial(sdmdl_nml.nml_gaussian, mu_max=1e8,
                           div_min=1e-8, div_max=1e8)
    complexity_gaussian = partial(sdmdl_nml.complexity_gaussian, mu_max=1e8,
                                  div_min=1e-8, div_max=1e8)
    retrospective_first = sdmdl.Retrospective(h=100, encoding_func=nml_gaussian,
                                              complexity_func=complexity_gaussian, order=0)
    lnml_gaussian = partial(hsdmdl2_nml.lnml_gaussian, sigma_given=0.3)
    retrospective_second = hsdmdl2.Retrospective(encoding_func=lnml_gaussian, d=2, M=5, min_datapoints=5, delta_0=0.05,
                                                 delta_1=0.05, delta_2=0.05, how_to_drop='all', order=0, reliability=True)

    retrospective = aw2s_mdl.Retrospective(
        retrospective_first, retrospective_second)
    _calc_metrics_draw_figure(
        name, data, changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective)