Beispiel #1
0
def get_residual_form(u, v, rho_e, method='RAMP'):

    df.dx = df.dx(metadata={"quadrature_degree": 4})
    # stiffness = rho_e/(1 + 8. * (1. - rho_e))

    if method == 'SIMP':
        stiffness = rho_e**3
    else:  #RAMP
        stiffness = rho_e / (1 + 8. * (1. - rho_e))

    # print('the value of stiffness is:', rho_e.vector().get_local())
    # Kinematics
    k = 3e1
    E = k * stiffness
    nu = 0.3
    mu, lmbda = (E / (2 * (1 + nu))), (E * nu / ((1 + nu) * (1 - 2 * nu)))

    d = len(u)
    I = df.Identity(d)  # Identity tensor
    F = I + df.grad(u)  # Deformation gradient
    C = F.T * F  # Right Cauchy-Green tensor

    E_ = 0.5 * (C - I)  # Green--Lagrange strain
    S = 2.0 * mu * E_ + lmbda * df.tr(E_) * df.Identity(
        d)  # stress tensor (C:eps)
    psi = 0.5 * df.inner(S, E_)  # 0.5*eps:C:eps

    # Total potential energy
    Pi = psi * df.dx
    # Solve weak problem obtained by differentiating Pi:
    res = df.derivative(Pi, u, v)
    return res
def get_residual_form(u, v, rho_e, T, T_hat, KAPPA, k, alpha, mode='plane_stress', method='RAMP', T_r=df.Constant(20.)):
    if method=='RAMP':
        p =8
        C = rho_e/(1 + p * (1. - rho_e))
    else:
        C = rho_e**3

    E = k * C 
    # C is the design variable, its values is from 0 to 1

    nu = 0.3 # Poisson's ratio


    lambda_ = E * nu/(1. + nu)/(1 - 2 * nu)
    mu = E / 2 / (1 + nu) #lame's parameters

    if mode == 'plane_stress':
        lambda_ = 2*mu*lambda_/(lambda_+2*mu)

    # Th = df.Constant(7)
    I = df.Identity(len(u))
    T_0 = df.Constant(20.)
    w_ij = 0.5 * (df.grad(u) + df.grad(u).T) - C * alpha * I * (T-T_0)
    v_ij = 0.5 * (df.grad(v) + df.grad(v).T)

    d = len(u)

    sigm = lambda_*df.div(u)*df.Identity(d) + 2*mu*w_ij 

    a = df.inner(sigm, v_ij) * df.dx + \
        df.dot(C*KAPPA* df.grad(T),  df.grad(T_hat)) * df.dx
    print("get a-------")
    
    return a
Beispiel #3
0
    def Fa(self):

        if self.model == ActiveModels.active_stress:
            return dolfin.Identity(self.dim)

        f0 = self.f0
        f0f0 = dolfin.outer(f0, f0)
        Id = dolfin.Identity(self.dim)

        mgamma = 1 - self.activation_field
        Fa = mgamma * f0f0 + pow(mgamma,
                                 -1.0 / float(self.dim - 1)) * (Id - f0f0)

        return Fa
Beispiel #4
0
def get_volume(geometry, u=None, chamber="lv"):

    if "ENDO" in geometry.markers:
        lv_endo_marker = geometry.markers["ENDO"]
        rv_endo_marker = None
    else:
        lv_endo_marker = geometry.markers["ENDO_LV"]
        rv_endo_marker = geometry.markers["ENDO_RV"]

    marker = lv_endo_marker if chamber == "lv" else rv_endo_marker

    if marker is None:
        return None

    if hasattr(marker, "__len__"):
        marker = marker[0]

    ds = df.Measure(
        "exterior_facet", subdomain_data=geometry.ffun, domain=geometry.mesh
    )(marker)

    X = df.SpatialCoordinate(geometry.mesh)
    N = df.FacetNormal(geometry.mesh)

    if u is None:
        vol = df.assemble((-1.0 / 3.0) * df.dot(X, N) * ds)
    else:
        F = df.grad(u) + df.Identity(3)
        J = df.det(F)
        vol = df.assemble((-1.0 / 3.0) * df.dot(X + u, J * df.inv(F).T * N) * ds)

    return vol
Beispiel #5
0
    def __init__(
        self,
        mesh,
        field,
        strain_tensor="E",
        dmu=None,
        approx="original",
        F_ref=None,
        isochoric=True,
        displacement_space="CG_2",
        interpolation_space="CG_1",
        description="",
    ):

        ModelObservation.__init__(self,
                                  mesh,
                                  target_space="R_0",
                                  description=description)

        # Check that the given field is a vector of the same dim as the mesh
        dim = mesh.geometry().dim()
        # assert isinstance(field, (dolfin.Function, dolfin.Constant)
        assert field.ufl_shape[0] == dim
        approxs = ["project", "interpolate", "original"]
        msg = 'Expected "approx" for be one of {}, got {}'.format(
            approxs, approx)
        self.field = field

        assert approx in approxs, msg
        self._approx = approx

        self._F_ref = F_ref if F_ref is not None else dolfin.Identity(dim)

        self._isochoric = isochoric

        tensors = ["gradu", "E", "almansi"]
        msg = "Expected strain tensor to be one of {}, got {}".format(
            tensors, strain_tensor)
        assert strain_tensor in tensors, msg
        self._tensor = strain_tensor

        if dmu is None:
            dmu = dolfin.dx(domain=mesh)
        assert isinstance(dmu, dolfin.Measure)
        self._dmu = dmu

        self._vol = dolfin_adjoint.Constant(
            dolfin.assemble(dolfin.Constant(1.0) * dmu))

        # These spaces are only used if you want to project
        # or interpolate the displacement before assigning it
        # Space for interpolating the displacement if needed
        family, degree = interpolation_space.split("_")
        self._interpolation_space = dolfin.VectorFunctionSpace(
            mesh, family, int(degree))

        # Displacement space
        family, degree = displacement_space.split("_")
        self._displacement_space = dolfin.VectorFunctionSpace(
            mesh, family, int(degree))
Beispiel #6
0
def get_residual_form(u, v, rho_e, E = 1, method='SIMP'):
    if method =='SIMP':
        C = rho_e**3
    else:
        C = rho_e/(1 + 8. * (1. - rho_e))
    

    E = 1. * C # C is the design variable, its values is from 0 to 1

    nu = 0.3 # Poisson's ratio

    lambda_ = E * nu/(1. + nu)/(1 - 2 * nu)
    mu = E / 2 / (1 + nu) #lame's parameters


    w_ij = 0.5 * (df.grad(u) + df.grad(u).T)
    v_ij = 0.5 * (df.grad(v) + df.grad(v).T)
    
    d = len(u)

    sigm = lambda_*df.div(u)*df.Identity(d) + 2*mu*w_ij

    a = df.inner(sigm, v_ij) * df.dx 
    
    return a
Beispiel #7
0
def get_residual_form(u, v, rho_e, Th, k=199.5e9, alpha=15.4e-6):
    C = rho_e / (1 + 8. * (1. - rho_e))

    E = k * C  # C is the design variable, its values is from 0 to 1

    nu = 0.3  # Poisson's ratio
    Th = Th - df.Constant(20.)
    Th = 0.

    lambda_ = E * nu / (1. + nu) / (1 - 2 * nu)
    mu = E / 2 / (1 + nu)  #lame's parameters

    # Th = df.Constant(7)

    w_ij = 0.5 * (df.grad(u) + df.grad(u).T)
    v_ij = 0.5 * (df.grad(v) + df.grad(v).T)

    d = len(u)

    sigm = (lambda_ * df.tr(w_ij) - alpha *
            (3. * lambda_ + 2. * mu) * Th) * df.Identity(d) + 2 * mu * w_ij

    a = df.inner(sigm, v_ij) * df.dx

    return a
 def normal_stresses(self):
     k = self.bc_dict["obstacle"]
     n = df.FacetNormal(self.mesh)
     tau = (self.mu * (df.grad(self.u_) + df.grad(self.u_).T) -
            self.p_ * df.Identity(2))
     normal_stresses_x = -df.assemble(df.dot(tau, n)[0] * self.ds_(k))
     normal_stresses_y = df.assemble(df.dot(tau, n)[1] * self.ds_(k))
     return np.array([normal_stresses_x, normal_stresses_y])
Beispiel #9
0
def stf3d3(rank3_3d):
    r"""
    Return the symmetric and trace-free part of a 3D 3-tensor.

    Return the symmetric and trace-free part of a 3D 3-tensor. (dev(sym(.)))

    Returns the STF part :math:`A_{\langle i j k\rangle}` of a rank-3 tensor
    :math:`A \in \mathbb{R}^{3 \times 3 \times 3}` [TOR2018]_.

    .. math::
        A_{\langle i j k\rangle}=A_{(i j k)}-\frac{1}{5}\left[A_{(i l l)}
        \delta_{j k}+A_{(l j l)} \delta_{i k}+A_{(l l k)} \delta_{i j}\right]

    A gradient :math:`\frac{\partial S_{\langle i j}}{\partial x_{k \rangle}}`
    of a symmetric 2-tensor :math:`S \in \mathbb{R}^{3 \times 3}` has the
    deviator [STR2005]_:

    .. math::
        \frac{\partial S_{\langle i j}}{\partial x_{k \rangle}}
        =&
        \frac{1}{3}\left(
             \frac{\partial S_{i j}}{\partial x_{k}}
            +\frac{\partial S_{i k}}{\partial x_{j}}
            +\frac{\partial S_{j k}}{\partial x_{i}}
        \right)
        -\frac{1}{15}
        \biggl[
            \left(
                 \frac{\partial S_{i r}}{\partial x_{r}}
                +\frac{\partial S_{i r}}{\partial x_{r}}
                +\frac{\partial S_{r r}}{\partial x_{i}}
            \right) \delta_{j k}
        \\
        &+
        \left(
             \frac{\partial S_{j r}}{\partial x_{r}}
            +\frac{\partial S_{j r}}{\partial x_{r}}
            +\frac{\partial S_{r r}}{\partial x_{j}}
        \right) \delta_{i k}
        +\left(
             \frac{\partial S_{k r}}{\partial x_{r}}
            +\frac{\partial S_{k r}}{\partial x_{r}}
            +\frac{\partial S_{r r}}{\partial x_{k}}
        \right) \delta_{i j}
        \biggr]
    """
    i, j, k, L = ufl.indices(4)
    delta = df.Identity(3)

    sym_ijk = sym3d3(rank3_3d)[i, j, k]
    traces_ijk = 1 / 5 * (+sym3d3(rank3_3d)[i, L, L] * delta[j, k] +
                          sym3d3(rank3_3d)[L, j, L] * delta[i, k] +
                          sym3d3(rank3_3d)[L, L, k] * delta[i, j])
    tracefree_ijk = sym_ijk - traces_ijk
    return ufl.as_tensor(tracefree_ijk, (i, j, k))
Beispiel #10
0
    def molecular_stress_tensor(self, u, p):
        r"""Define the molecular stress tensor:

        .. math:: \bar{\pi} = 2\mu\bar{\epsilon}-p\bar{I}

        :param u: The velocity field.
        :param p: The pressure field.
        :return: The molecular stress tensor.
        """
        mu = self._mu.magnitude
        return 2 * mu * self.strain_rate_tensor(u) - p * dolfin.Identity(3)
Beispiel #11
0
def update_vector_field(
    f0, new_mesh, u=None, name="fiber", normalize=True, regen_fibers=False
):

    df.parameters["form_compiler"]["representation"] = "quadrature"
    df.parameters["form_compiler"]["quadrature_degree"] = 4

    ufl_elem = f0.function_space().ufl_element()
    f0_new = df.Function(df.FunctionSpace(new_mesh, ufl_elem), name=name)

    mpi_size = df.mpi_comm_world().getSize()

    if regen_fibers and mpi_size == 1:

        from mesh_generation.generate_mesh import setup_fiber_parameters
        from mesh_generation.mesh_utils import load_geometry_from_h5, generate_fibers

        fiber_params = setup_fiber_parameters()
        fields = generate_fibers(new_mesh, fiber_params)
        f0_new = fields[0]

    else:

        if regen_fibers:
            msg = (
                "Warning fibers can only be regenerated in serial. "
                + "Use Piola transformation instead.\n"
            )
            logger.warning(msg)

        if u is not None:

            f0_mesh = f0.function_space().mesh()
            u_elm = u.function_space().ufl_element()
            V = df.FunctionSpace(f0_mesh, u_elm)
            u0 = df.Function(V)
            arr = gather_broadcast(u.vector().array())
            assign_to_vector(u0.vector(), arr)

            F = df.grad(u0) + df.Identity(3)

            f0_updated = df.project(F * f0, f0.function_space())

            if normalize:
                f0_updated = normalize_vector_field(f0_updated)

            f0_arr = gather_broadcast(f0_updated.vector().array())
            assign_to_vector(f0_new.vector(), f0_arr)

        else:
            f0_arr = gather_broadcast(f0.vector().array())
            assign_to_vector(f0_new.vector(), f0_arr)

    return f0_new
Beispiel #12
0
    def define_deformation_tensors(self):
        """
        Define kinematic tensors needed for constitutive equations. Tensors
        that are irrelevant to the current problem are set to 0, e.g. the
        deformation gradient is set to 0 when simulating fluid flow. Secondary
        tensors are added with the suffix "0" if the problem is time-dependent.
        The names of member data added to an instance of the MechanicsProblem
        class are:

        - :code:`deformationGradient`
        - :code:`deformationGradient0`
        - :code:`velocityGradient`
        - :code:`velocityGradient0`
        - :code:`jacobian`
        - :code:`jacobian0`


        """

        # Exit function if tensors have already been defined.
        if hasattr(self, 'deformationGradient') \
           or hasattr(self, 'deformationRateGradient'):
            return None

        # Checks the type of material to determine which deformation
        # tensors to define.
        if self.config['material']['type'] == 'elastic':
            I = dlf.Identity(self.mesh.geometry().dim())
            self.deformationGradient = I + dlf.grad(self.displacement)
            self.jacobian = dlf.det(self.deformationGradient)

            if self.config['formulation']['time']['unsteady']:
                self.velocityGradient = dlf.grad(self.velocity)
                self.deformationGradient0 = I + dlf.grad(self.displacement0)
                self.velocityGradient0 = dlf.grad(self.velocity0)
                self.jacobian0 = dlf.det(self.deformationGradient0)
            else:
                self.velocityGradient = 0
                self.deformationGradient0 = 0
                self.velocityGradient0 = 0
                self.jacobian0 = 0
        else:
            self.deformationGradient = 0
            self.deformationGradient0 = 0
            self.jacobian = 0
            self.jacobian0 = 0

            self.velocityGradient = dlf.grad(self.velocity)
            if self.config['formulation']['time']['unsteady']:
                self.velocityGradient0 = dlf.grad(self.velocity0)
            else:
                self.velocityGradient0 = 0

        return None
Beispiel #13
0
    def set_parameters(self, mesh, elastic_ratio):

        assert isinstance(mesh, dlfn.Mesh)
        self._mesh = mesh

        self._space_dim = self._mesh.geometry().dim()

        self._I = dlfn.Identity(self._space_dim)

        assert isinstance(elastic_ratio, (dlfn.Constant, float))
        assert float(elastic_ratio) > 0.
        self._elastic_ratio = elastic_ratio
Beispiel #14
0
    def strain_energy(self, F_):

        F = self.Fe(F_)

        dim = get_dimesion(F)
        gradu = F - dolfin.Identity(dim)
        epsilon = 0.5 * (gradu + gradu.T)
        W = self.lmbda / 2 * (dolfin.tr(epsilon)**2) + self.mu * dolfin.tr(
            epsilon * epsilon, )

        # Active stress
        Wactive = self.Wactive(F, diff=0)

        return W + Wactive
Beispiel #15
0
def get_residual_form(u, v, rho_e, T, T_hat, KAPPA, k, alpha, mode='plane_stress', method='RAMP'):
    if method=='RAMP':
        C = rho_e/(1 + 8. * (1. - rho_e))
    else:
        C = rho_e**3

    E = k * C 
    # C is the design variable, its values is from 0 to 1

    nu = 0.3 # Poisson's ratio


    lambda_ = E * nu/(1. + nu)/(1 - 2 * nu)
    mu = E / 2 / (1 + nu) #lame's parameters

    if mode == 'plane_stress':
        lambda_ = 2*mu*lambda_/(lambda_+2*mu)

    # Th = df.Constant(7)
    I = df.Identity(len(u))
    # w_ij = 0.5 * (df.grad(u) + df.grad(u).T) - alpha * I * T
    # change May 23 penalize on alpha
    T_0 = df.Constant(20)
    w_ij = 0.5 * (df.grad(u) + df.grad(u).T) - C*alpha * I * (T-T_0)
    v_ij = 0.5 * (df.grad(v) + df.grad(v).T)

    d = len(u)
    # kappa = alpha*(2*mu + 3*lambda_)
    sigm = lambda_*df.div(u)*df.Identity(d) + 2*mu*w_ij 
    # eps_u = df.sym(df.grad(u))
    # sigm = (lambda_*df.tr(eps_u)-kappa*T)*df.Identity(d) + 2*mu*eps_u 

    a = df.inner(sigm, v_ij) * df.dx + \
        df.dot(C*KAPPA* df.grad(T-T_0),  df.grad(T_hat)) * df.dx
    print("get a-------")
    
    return a
Beispiel #16
0
def get_residual_form(u,
                      v,
                      rho_e,
                      phi_angle,
                      k,
                      alpha,
                      method='RAMP',
                      Th=df.Constant(1.)):
    if method == 'SIMP':
        C = rho_e**3
    else:
        C = rho_e / (1 + 8. * (1. - rho_e))

    E = k
    # C is the design variable, its values is from 0 to 1

    nu = 0.49  # Poisson's ratio

    lambda_ = E * nu / (1. + nu) / (1 - 2 * nu)
    mu = E / 2 / (1 + nu)  #lame's parameters

    # Th = df.Constant(5e1)
    # Th = df.Constant(1.)
    # Th = df.Constant(5e0)

    w_ij = 0.5 * (df.grad(u) + df.grad(u).T)
    v_ij = 0.5 * (df.grad(v) + df.grad(v).T)

    S = df.as_matrix([[-2., 0., 0.], [0., 1., 0.], [0., 0., 1.]])

    L = df.as_matrix([[df.cos(phi_angle),
                       df.sin(phi_angle), 0.],
                      [-df.sin(phi_angle),
                       df.cos(phi_angle), 0.], [0., 0., 1.]])

    alpha_e = alpha * C
    eps = w_ij - alpha_e * Th * L.T * S * L

    d = len(u)

    sigm = lambda_ * df.div(u) * df.Identity(d) + 2 * mu * eps
    a = df.inner(sigm, v_ij) * df.dx

    return a
Beispiel #17
0
    def stress_tensor(self, L, p):
        """
        Return the Cauchy stress tensor for an incompressible Newtonian fluid,
        namely

        .. math::

           \mathbf{T} = -p\mathbf{I} + 2\mu\\text{Sym}(\mathbf{L}),

        where :math:`\mathbf{L} = \\text{grad}(\mathbf{v})`, :math:`\mathbf{I}`
        is the identity tensor, :math:`p` is the hydrostatic pressure, and
        :math:`\mu` is the dynamic viscosity.


        Parameters
        ----------

        L : ufl.differentiation.Grad
            The velocity gradient.
        p : dolfin.Function, ufl.indexed.Indexed
            The hydrostatic pressure.


        Returns
        -------

        T : ufl.algebra.Sum
            The Cauchy stress tensor defined above.


        """

        params = self._parameters
        dim = ufl.domain.find_geometric_dimension(L)
        mu = dlf.Constant(params['mu'], name='mu')

        I = dlf.Identity(dim)
        D = dlf.sym(L)

        return -p * I + dlf.Constant(2.0) * mu * D
Beispiel #18
0
def stress_strain(eps, lambda_, mu):
    I = dolfin.Identity(DIM)
    return lambda_ * dolfin.tr(eps) * I + 2 * mu * eps
	def sigma(self, uu):
		return 2.*self.mu*self.epsilon(uu) + self.ll*dolfin.tr(self.epsilon(uu))*dolfin.Identity(self.basedim)
h = d/16.
atol = 1.e-8
mesh = dolfin.RectangleMesh(dolfin.Point(0., -0.5*d), dolfin.Point(ell, 0.5*d), int(ell/h), int(d/h))
left = dolfin.CompiledSubDomain('on_boundary && x[0] <= atol', atol=atol)#dolfin.plot(mesh)
#plt.savefig("mesh.png")
# Variational formulation
degree = 1
element = dolfin.VectorElement('P', cell="triangle", degree=degree, dim=mesh.geometric_dimension())
V = dolfin.FunctionSpace(mesh, element)
u = dolfin.Function(V,name="displacement")
u_trial = dolfin.TrialFunction(V)
v = dolfin.TestFunction(V)

E = 1.0
nu = 0.3
I2 = dolfin.Identity(mesh.geometric_dimension())
mu = dolfin.Constant(E/2./(1.+nu))
lambda_ = dolfin.Constant(E*nu/(1.+nu)/(1.-2.*nu))

def strain_displacement(u):
    return dolfin.sym(dolfin.grad(u))

def stress_strain(eps):
    return lambda_*dolfin.tr(eps)*I2+2*mu*eps

bilinear_form = dolfin.inner(stress_strain(strain_displacement(u_trial)),
                             strain_displacement(v))*dolfin.dx

traction = dolfin.Expression(('x[0] < x_right ? 0.0 : -12.*M/d/d/d*x[1]', '0.0'),
                             x_right=ell-atol, M=1.0, d=d, degree=degree)
Beispiel #21
0
def main(dt,
         tEnd,
         length=10.0,
         height=5.0,
         numElementsFilm=2.0,
         reGen=True,
         ratLame=5.0,
         ratFilmSub=100.0):
    #fileDir = ("results-dt-%.2f-tEnd-%.0f-L-%.1f-H-%.1f-ratioLame-%.0f-ratioFilm-%.0f" %
    #           (dt, tEnd, length, height, ratLame, ratFilmSub))
    fileDir = "results-1"
    # create geometry
    rectDomain = Geometry(length=length, height=height, filmHeight=0.05)
    rectDomain.read_mesh(numElementsFilm, reGen)
    # define periodic boundary conditions
    periodicBC = PeriodicBoundary(rectDomain)
    # specify physical parameters
    physParams = Physical_Params(lmbdaSub=ratLame, muSub=1.0, ratFilmSub=100.0)
    physParams.create_Lame(rectDomain)
    # create discrete function space
    element = create_vector_element(rectDomain, order=1)
    W = dl.FunctionSpace(rectDomain.mesh,
                         element,
                         constrained_domain=periodicBC)

    # define boundaries
    def left(x, on_boundary):
        return dl.near(x[0], 0.) and on_boundary

    def right(x, on_boundary):
        return dl.near(x[0], rectDomain.length) and on_boundary

    def bottom(x, on_boundary):
        return dl.near(x[1], 0.0) and on_boundary

    def top(x, on_boundary):
        return dl.near(x[1], rectDomain.height) and on_boundary

    def corner(x, on_boundary):
        return dl.near(x[0], 0.0) and dl.near(x[1], 0.0)

    # define fixed boundary
    bcs = [
        dl.DirichletBC(W.sub(0), dl.Constant(0), left),
        dl.DirichletBC(W.sub(0), dl.Constant(0), right),
        dl.DirichletBC(W.sub(1), dl.Constant(0), bottom),
        dl.DirichletBC(W.sub(0), dl.Constant(0), corner, method="pointwise")
    ]
    bcs = bcs[-2:]
    # the variable to solve for
    w = dl.Function(W, name="Variables at current step")
    # test and trial function
    dw = dl.TrialFunction(W)
    w_ = dl.TestFunction(W)
    # dealing with physics of growth
    growthFactor = create_growthFactor(rectDomain, filmGrowth=1, subGrowth=0)
    Fg = create_Fg(growthFactor, "uniaxial")
    # kinematics
    I = dl.Identity(2)
    F = I + dl.grad(w)
    Fe = F * dl.inv(Fg)
    # write the variational form from potential energy
    psi = cal_neoHookean(Fe, physParams)
    Energy = psi * dl.dx
    Residual = dl.derivative(Energy, w, w_)
    Jacobian = dl.derivative(Residual, w, dw)
    problem = BucklingProblem(w, Energy, Residual, Jacobian)
    wLowerBound, wUpperBound = create_bounds(wMin=[-0.5, -0.5],
                                             wMax=[0.5, 0.5],
                                             functionSpace=W,
                                             boundaryCondtions=bcs)
    # Create the PETScTAOSolver
    solver = dl.PETScTAOSolver()
    TAOSolverParameters = {
        "method": "tron",
        "maximum_iterations": 1000,
        "monitor_convergence": True
    }
    solver.parameters.update(TAOSolverParameters)
    #solver.parameters["report"] = False
    #solver.parameters["linear_solver"] = "umfpack"
    #solver.parameters["line_search"] = "gpcg"
    #solver.parameters["preconditioner"] = "ml_amg"

    growthRate = 0.1
    growthEnd = growthRate * tEnd
    gF = 0.0
    outDisp = dl.File(fileDir + "/displacement.pvd")
    outDisp << (w, 0.0)
    iCounter = 0
    wArray = w.compute_vertex_values()

    while gF <= growthEnd - tol:
        gF += growthRate * dt
        iCounter += 1
        growthFactor.gF = gF
        w.vector()[:] += 2e-04 * np.random.uniform(-1, 1,
                                                   w.vector().local_size())
        nIters, converged = solver.solve(problem, w.vector(),
                                         wLowerBound.vector(),
                                         wUpperBound.vector())
        wArray[:] = w.compute_vertex_values()
        np.save(fileDir + "/w-{}.npy".format(iCounter), wArray)
        print("--- growth = %.4f, niters = %d, dt = %.5f -----" %
              (1 + gF, nIters, dt))
        outDisp << (w, gF)
Beispiel #22
0
 def __init__(self, domain, *args, **kwargs):
     self._domain = domain
     self.geometric_dimension = self.domain.mesh.ufl_cell(
     ).geometric_dimension()
     self.identity_tensor = dolf.Identity(self.geometric_dimension)
     self._complex_forms_flag = "real"
Beispiel #23
0
def get_residual_form(u,
                      v,
                      rho_e,
                      V_density,
                      tractionBC,
                      T,
                      iteration_number,
                      additive='strain',
                      k=8.,
                      method='RAMP'):

    df.dx = df.dx(metadata={"quadrature_degree": 4})
    # stiffness = rho_e/(1 + 8. * (1. - rho_e))

    if method == 'SIMP':
        stiffness = rho_e**3
    else:
        stiffness = rho_e / (1 + 8. * (1. - rho_e))

    # print('the value of stiffness is:', rho_e.vector().get_local())
    # Kinematics
    d = len(u)
    I = df.Identity(d)  # Identity tensor
    F = I + df.grad(u)  # Deformation gradient
    C = F.T * F  # Right Cauchy-Green tensor
    # Invariants of deformation tensors
    Ic = df.tr(C)
    J = df.det(F)
    stiffen_pow = 1.
    threshold_vol = 1.

    eps_star = 0.05
    # print("eps_star--------")

    if additive == 'strain':
        print("additive == strain")

        if iteration_number == 1:
            print('iteration_number == 1')
            eps = df.sym(df.grad(u))
            eps_dev = eps - 1 / 3 * df.tr(eps) * df.Identity(2)
            eps_eq = df.sqrt(2.0 / 3.0 * df.inner(eps_dev, eps_dev))
            # eps_eq_proj = df.project(eps_eq, density_function_space)
            ratio = eps_eq / eps_star
            ratio_proj = df.project(ratio, V_density)

            c1_e = k * (5.e-2) / (1 + 8. * (1. - (5.e-2))) / 6

            c2_e = df.Function(V_density)
            c2_e.vector().set_local(5e-4 * np.ones(V_density.dim()))

            fFile = df.HDF5File(df.MPI.comm_world, "c2_e_proj.h5", "w")
            fFile.write(c2_e, "/f")
            fFile.close()

            fFile = df.HDF5File(df.MPI.comm_world, "ratio_proj.h5", "w")
            fFile.write(ratio_proj, "/f")
            fFile.close()
            iteration_number += 1
            E = k * stiffness
            phi_add = (1 - stiffness) * ((c1_e * (Ic - 3)) + (c2_e *
                                                              (Ic - 3))**2)

        else:
            ratio_proj = df.Function(V_density)
            fFile = df.HDF5File(df.MPI.comm_world, "ratio_proj.h5", "r")
            fFile.read(ratio_proj, "/f")
            fFile.close()

            c2_e = df.Function(V_density)
            fFile = df.HDF5File(df.MPI.comm_world, "c2_e_proj.h5", "r")
            fFile.read(c2_e, "/f")
            fFile.close()
            c1_e = k * (5.e-2) / (1 + 8. * (1. - (5.e-2))) / 6

            c2_e = df.conditional(df.le(ratio_proj, eps_star),
                                  c2_e * df.sqrt(ratio_proj),
                                  c2_e * (ratio_proj**3))
            phi_add = (1 - stiffness) * ((c1_e * (Ic - 3)) + (c2_e *
                                                              (Ic - 3))**2)
            E = k * stiffness

            c2_e_proj = df.project(c2_e, V_density)
            print('c2_e projected -------------')

            eps = df.sym(df.grad(u))
            eps_dev = eps - 1 / 3 * df.tr(eps) * df.Identity(2)
            eps_eq = df.sqrt(2.0 / 3.0 * df.inner(eps_dev, eps_dev))
            # eps_eq_proj = df.project(eps_eq, V_density)
            ratio = eps_eq / eps_star
            ratio_proj = df.project(ratio, V_density)

            fFile = df.HDF5File(df.MPI.comm_world, "c2_e_proj.h5", "w")
            fFile.write(c2_e_proj, "/f")
            fFile.close()

            fFile = df.HDF5File(df.MPI.comm_world, "ratio_proj.h5", "w")
            fFile.write(ratio_proj, "/f")
            fFile.close()

    elif additive == 'vol':
        print("additive == vol")
        stiffness = stiffness / (df.det(F)**stiffen_pow)

        # stiffness = df.conditional(df.le(df.det(F),threshold_vol), (stiffness/(df.det(F)/threshold_vol))**stiffen_pow, stiffness)
        E = k * stiffness

    elif additive == 'False':
        print("additive == False")
        E = k * stiffness  # rho_e is the design variable, its values is from 0 to 1

    nu = 0.4  # Poisson's ratio

    lambda_ = E * nu / (1. + nu) / (1 - 2 * nu)
    mu = E / 2 / (1 + nu)  #lame's parameters

    # Stored strain energy density (compressible neo-Hookean model)
    psi = (mu / 2) * (Ic - 3) - mu * df.ln(J) + (lambda_ / 2) * (df.ln(J))**2
    # print('the length of psi is:',len(psi.vector()))
    if additive == 'strain':
        psi += phi_add
    B = df.Constant((0.0, 0.0))

    # Total potential energy
    '''The first term in this equation provided this error'''
    Pi = psi * df.dx - df.dot(B, u) * df.dx - df.dot(T, u) * tractionBC

    res = df.derivative(Pi, u, v)

    return res
Beispiel #24
0
    'fiber_files': fiber_files,
    'fiber_names': fiber_names,
    'element': 'p%i' % pd
}

from fenicsmechanics.materials.solid_materials import AnisotropicMaterial, FungMaterial

mat1 = AnisotropicMaterial(fiber_dict1, mesh)

hdf5_name = "fibers/n_all.h5"
f = dlf.HDF5File(MPI_COMM_WORLD, hdf5_name, 'w')
f.write(n1, "n1")
f.write(n2, "n2")
f.close()

fiber_dict2 = {
    'fiber_files': hdf5_name,
    'fiber_names': fiber_names[:2],
    'element': 'p%i' % pd
}

mat2 = AnisotropicMaterial(fiber_dict2, mesh)

material_dict = {'kappa': 1e4, 'fibers': fiber_dict2}
mat3 = FungMaterial(mesh, inverse=True, incompressible=False, **material_dict)

u = dlf.Function(W)
F = dlf.Identity(2) + dlf.grad(u)
J = dlf.det(F)
P = mat3.stress_tensor(F, J)
Beispiel #25
0
def sigma(u, p, mu):
    # Define stress tensor
    return 2 * mu * epsilon(u) - p * dolfin.Identity(len(u))
Beispiel #26
0
bcs.append(DirichletBC(Vx, zero, boundary_markers, id_subdomain_fix))
bcs.append(DirichletBC(Vx, uxD_msr, boundary_markers, id_subdomain_msr))

bcs.append(DirichletBC(V, zeros, fixed_vertex_000, "pointwise"))
bcs.append(DirichletBC(Vz, zero, fixed_vertex_010, "pointwise"))

### Define hyperelastic material model

material_parameters = {'E': Constant(1.0), 'nu': Constant(0.0)}

E, nu = material_parameters.values()

d = len(u)  # Displacement dimension

I = dolfin.Identity(d)
F = dolfin.variable(I + dolfin.grad(u))

C = F.T * F
J = dolfin.det(F)
I1 = dolfin.tr(C)

# Lame material parameters
lm = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
mu = E / (2.0 + 2.0 * nu)

# Energy density of a Neo-Hookean material model
psi = (mu / 2.0) * (I1 - d - 2.0 * dolfin.ln(J)) + (lm / 2.0) * dolfin.ln(J)**2

# First Piola-Kirchhoff
pk1 = dolfin.diff(psi, F)
Beispiel #27
0
def numerical_test(
    user_parameters
):
    time_data = []
    time_data_pd = []
    spacetime = []
    lmbda_min_prev = 1e-6
    bifurcated = False
    bifurcation_loads = []
    save_current_bifurcation = False
    bifurcation_loads = []

    comm = MPI.comm_world

    default_parameters = getDefaultParameters()
    default_parameters.update(user_parameters)

    parameters = default_parameters
    parameters['code']['script'] = __file__

    signature = hashlib.md5(str(parameters).encode('utf-8')).hexdigest()
    outdir = '../output/traction/{}-{}CPU'.format(signature, size)
    Path(outdir).mkdir(parents=True, exist_ok=True)

    log(LogLevel.INFO, 'Outdir is: '+outdir)
    BASE_DIR = os.path.dirname(os.path.realpath(__file__))
    print(parameters['geometry'])
    d={'Lx': parameters['geometry']['Lx'],'Ly': parameters['geometry']['Ly'],
        'h': parameters['material']['ell']/parameters['geometry']['n']}

    geom_signature = hashlib.md5(str(d).encode('utf-8')).hexdigest()

    Lx = parameters['geometry']['Lx']
    Ly = parameters['geometry']['Ly']
    n = parameters['geometry']['n']
    ell = parameters['material']['ell']
    fname = os.path.join('../meshes', 'strip-{}'.format(geom_signature))

    resolution = max(parameters['geometry']['n'] * Lx / ell, 5/(Ly*10))
    resolution = 3

    geom = mshr.Rectangle(dolfin.Point(-Lx/2., -Ly/2.), dolfin.Point(Lx/2., Ly/2.))
    mesh = mshr.generate_mesh(geom, resolution)

    log(LogLevel.INFO, 'Number of dofs: {}'.format(mesh.num_vertices()*(1+parameters['general']['dim'])))
    if size == 1:
        meshf = dolfin.File(os.path.join(outdir, "mesh.xml"))
        plot(mesh)
        plt.savefig(os.path.join(outdir, "mesh.pdf"), bbox_inches='tight')

    with open(os.path.join(outdir, 'parameters.yaml'), "w") as f:
        yaml.dump(parameters, f, default_flow_style=False)

    Lx = parameters['geometry']['Lx']
    ell =  parameters['material']['ell']
    savelag = 1

    # Function Spaces
    V_u = dolfin.VectorFunctionSpace(mesh, "CG", 1)
    V_alpha = dolfin.FunctionSpace(mesh, "CG", 1)
    L2 = dolfin.FunctionSpace(mesh, "DG", 0)
    u = dolfin.Function(V_u, name="Total displacement")
    u.rename('u', 'u')
    alpha = Function(V_alpha)
    alpha_old = dolfin.Function(alpha.function_space())
    alpha.rename('alpha', 'alpha')
    dalpha = TrialFunction(V_alpha)
    alpha_bif = dolfin.Function(V_alpha)
    alpha_bif_old = dolfin.Function(V_alpha)


    state = {'u': u, 'alpha': alpha}
    Z = dolfin.FunctionSpace(mesh,
            dolfin.MixedElement([u.ufl_element(),alpha.ufl_element()]))
    z = dolfin.Function(Z)
    v, beta = dolfin.split(z)
    left = dolfin.CompiledSubDomain("near(x[0], -Lx/2.)", Lx=Lx)
    right = dolfin.CompiledSubDomain("near(x[0], Lx/2.)", Lx=Lx)
    bottom = dolfin.CompiledSubDomain("near(x[1],-Ly/2.)", Ly=Ly)
    top = dolfin.CompiledSubDomain("near(x[1],Ly/2.)", Ly=Ly)
    left_bottom_pt = dolfin.CompiledSubDomain("near(x[0],-Lx/2.) && near(x[1],-Ly/2.)", Lx=Lx, Ly=Ly)

    mf = dolfin.MeshFunction("size_t", mesh, 1, 0)
    right.mark(mf, 1)
    left.mark(mf, 2)
    bottom.mark(mf, 3)
    ut = dolfin.Expression("t", t=0.0, degree=0)
    bcs_u = [dolfin.DirichletBC(V_u.sub(0), dolfin.Constant(0), left),
             dolfin.DirichletBC(V_u.sub(0), ut, right),
             dolfin.DirichletBC(V_u, (0, 0), left_bottom_pt, method="pointwise")]
    bcs_alpha = []

    bcs = {"damage": bcs_alpha, "elastic": bcs_u}

    ds = dolfin.Measure("ds", subdomain_data=mf)
    dx = dolfin.Measure("dx", metadata=parameters['compiler'], domain=mesh)

    ell = parameters['material']['ell']

    # -----------------------
    # Problem definition
    k_res = parameters['material']['k_res']
    a = (1 - alpha) ** 2. + k_res
    w_1 = parameters['material']['sigma_D0'] ** 2 / parameters['material']['E']
    w = w_1 * alpha
    eps = sym(grad(u))
    eps0t=Expression([['t', 0.],[0.,'t']], t=0., degree=0)
    lmbda0 = parameters['material']['E'] * parameters['material']['nu'] /(1. - parameters['material']['nu'])**2.
    mu0 = parameters['material']['E']/ 2. / (1.0 + parameters['material']['nu'])
    nu = parameters['material']['nu']
    sigma0 = lmbda0 * tr(eps)*dolfin.Identity(parameters['general']['dim']) + 2*mu0*eps
    e1 = Constant((1., 0))
    _sigma = ((1 - alpha) ** 2. + k_res)*sigma0
    _snn = dolfin.dot(dolfin.dot(_sigma, e1), e1)

    # -------------------

    ell = parameters['material']['ell']
    E = parameters['material']['E']

    def elastic_energy(u,alpha, E=E, nu=nu, eps0t=eps0t, k_res=k_res):
        a = (1 - alpha) ** 2. + k_res
        eps = sym(grad(u))
        Wt = a*E*nu/(2*(1-nu**2.)) * tr(eps)**2.                                \
            + a*E/(2.*(1+nu))*(inner(eps, eps))
        return Wt * dx 

    def dissipated_energy(alpha,w_1=w_1,ell=ell):
        return w_1 *( alpha + ell** 2.*inner(grad(alpha), grad(alpha)))*dx

    def total_energy(u, alpha, k_res=k_res, w_1=w_1, 
                            E=E, 
                            nu=nu, 
                            ell=ell,
                            eps0t=eps0t):
        elastic_energy_ = elastic_energy(u,alpha, E=E, nu=nu, eps0t=eps0t, k_res=k_res)
        dissipated_energy_ = dissipated_energy(alpha,w_1=w_1,ell=ell)
        return elastic_energy_ + dissipated_energy_

    def energy_1d(h, perturbation_v=Function(u.function_space()), perturbation_beta=Function(alpha.function_space())):
        return assemble(total_energy(u + float(h) * perturbation_v,
                                alpha + float(h) * perturbation_beta))

    energy = total_energy(u,alpha)

    def create_output(outdir):
        file_out = dolfin.XDMFFile(os.path.join(outdir, "output.xdmf"))
        file_out.parameters["functions_share_mesh"] = True
        file_out.parameters["flush_output"] = True
        file_postproc = dolfin.XDMFFile(os.path.join(outdir, "postprocess.xdmf"))
        file_postproc.parameters["functions_share_mesh"] = True
        file_postproc.parameters["flush_output"] = True
        file_eig = dolfin.XDMFFile(os.path.join(outdir, "perturbations.xdmf"))
        file_eig.parameters["functions_share_mesh"] = True
        file_eig.parameters["flush_output"] = True
        file_bif = dolfin.XDMFFile(os.path.join(outdir, "bifurcation.xdmf"))
        file_bif.parameters["functions_share_mesh"] = True
        file_bif.parameters["flush_output"] = True
        file_bif_postproc = dolfin.XDMFFile(os.path.join(outdir, "bifurcation_postproc.xdmf"))
        file_bif_postproc.parameters["functions_share_mesh"] = True
        file_bif_postproc.parameters["flush_output"] = True
        file_ealpha = dolfin.XDMFFile(os.path.join(outdir, "elapha.xdmf"))
        file_ealpha.parameters["functions_share_mesh"] = True
        file_ealpha.parameters["flush_output"] = True

        files = {'output': file_out, 
                 'postproc': file_postproc,
                 'eigen': file_eig,
                 'bifurcation': file_bif,
                 'ealpha': file_ealpha}

        return files

    files = create_output(outdir)

    solver = EquilibriumAM(energy, state, bcs, parameters=parameters)
    stability = StabilitySolver(energy, state, bcs, parameters = parameters)
    linesearch = LineSearch(energy, state)

    load_steps = np.linspace(parameters['loading']['load_min'],
        parameters['loading']['load_max'],
        parameters['loading']['n_steps'])

    tc = (parameters['material']['sigma_D0']/parameters['material']['E'])**(.5)

    _eps = 1e-3
    load_steps = [0., tc-_eps, tc+_eps]

    time_data = []
    time_data_pd = []
    bifurcation_loads = []
    save_current_bifurcation = False

    alpha_bif = dolfin.Function(V_alpha)
    alpha_bif_old = dolfin.Function(V_alpha)

    bifurcation_loads = []

    save_bifurcation = 1

    log(LogLevel.INFO, '{}'.format(parameters))
    for step, load in enumerate(load_steps):
        plt.clf()
        mineigs = []
        exhaust_modes = []

        log(LogLevel.CRITICAL, '====================== STEPPING ==========================')
        log(LogLevel.CRITICAL, 'Solving load t = {:.2f}'.format(load))
        alpha_old.assign(alpha)
        ut.t = load
        (time_data_i, am_iter) = solver.solve()

        # Second order stability
        (stable, negev) = stability.solve(solver.damage.problem.lb)
        log(LogLevel.CRITICAL, 'Current state is{}stable'.format(' ' if stable else ' un'))

        if stable:
            solver.update()
        else:
            log(LogLevel.INFO, 'About to bifurcate load {:.3f} step {}'.format(load, step))

            iteration = 1
            mineigs.append(stability.mineig)

            while stable == False:
                log(LogLevel.INFO, 'Continuation iteration {}'.format(iteration))
                iteration += 1

                # plotstep()

                cont_data_pre = compile_continuation_data(state, energy)
                opt_mode = 0

                perturbation_v    = stability.perturbations_v[opt_mode]
                perturbation_beta = stability.perturbations_beta[opt_mode]

                (hmin, hmax) = linesearch.admissible_interval(alpha, alpha_old, perturbation_beta)

                hs = np.linspace(hmin, hmax, 20)
                energy_vals = np.array([energy_1d(h, perturbation_v, perturbation_beta) for h in hs])

                h_opt = hs[np.argmin(energy_vals)]

                log(LogLevel.INFO, 'Computed h_opt {}'.format(h_opt))

                perturbation = {'v': stability.perturbations_v[opt_mode], 
                                'beta': stability.perturbations_beta[opt_mode], 
                                'h': h_opt}

                perturbState(state, perturbation)

                (time_data_i, am_iter) = solver.solve(outdir)


                (stable, negev) = stability.solve(solver.damage.problem.lb)
                mineigs.append(stability.mineig)

                log(LogLevel.INFO, 'Continuation iteration {}, current state is{}stable'.format(iteration, ' ' if stable else ' un'))

                cont_data_post = compile_continuation_data(state, energy)

                # continuation criterion
                if abs(np.diff(mineigs)[-1]) > parameters['stability']['cont_rtol']:
                    log(LogLevel.INFO, 'Continuing perturbations')
                else:
                    log(LogLevel.CRITICAL, 'We are stuck in the matrix')
                    log(LogLevel.WARNING, 'Continuing load program')
                    break

            solver.update()

            if save_current_bifurcation:
                plotPerturbationData()
                savePerturbationData()
                save_current_bifurcation = False

        def compileTimeData(time_data_i, load):

            time_data_i["load"] = load
            time_data_i["alpha_max"] = max(alpha.vector()[:])
            time_data_i["elastic_energy"] = dolfin.assemble(elastic_energy(
                u,alpha, E=E, nu=nu, eps0t=eps0t, k_res=k_res))
            time_data_i["dissipated_energy"] = dolfin.assemble(
                (w + w_1 * parameters['material']['ell'] ** 2. * inner(grad(alpha), grad(alpha)))*dx)
            time_data_i["stable"] = stability.stable
            time_data_i["# neg ev"] = stability.negev
            time_data_i["eigs"] = stability.eigs if hasattr(stability, 'eigs') else np.inf
            time_data_i["sigma"] = 1/Ly * dolfin.assemble(_snn*ds(1))

            log(LogLevel.INFO,
                "Load/time step {:.4g}: converged in iterations: {:3d}, err_alpha={:.4e}".format(
                    time_data_i["load"],
                    time_data_i["iterations"][0],
                    time_data_i["alpha_error"][0]))

            return time_data_i

        time_data.append(compileTimeData(time_data_i, load))
        time_data_pd = pd.DataFrame(time_data)

        def outputData():
            np.save(os.path.join(outdir, 'bifurcation_loads'), bifurcation_loads, allow_pickle=True, fix_imports=True)

            with files['output'] as file:
                file.write(alpha, load)
                file.write(u, load)

            with files['postproc'] as file:
                file.write_checkpoint(alpha, "alpha-{}".format(step), step, append = True)
                file.write_checkpoint(u, "u-{}".format(step), step, append = True)
                log(LogLevel.INFO, 'Written postprocessing step {}'.format(step))

            time_data_pd.to_json(os.path.join(outdir, "time_data.json"))

        outputData()
    return time_data_pd, outdir
#Define HDG element and function space
element_cls = geopart.stokes.incompressible.HDG2()
W = element_cls.function_space(mesh)

ds = dolfin.Measure('ds', domain=mesh, subdomain_data=boundaries)
n = dolfin.FacetNormal(mesh)

#Define boundary condition
U = element_cls.create_solution_variable(W)

p_in = dolfin.Constant(1.0)  # pressure inlet
p_out = dolfin.Constant(0.0)  # pressure outlet
noslip = dolfin.Constant([0.0] * mesh.geometry().dim())  # no-slip wall

#Boundary conditions
gN1 = (-p_out * dolfin.Identity(mesh.geometry().dim())) * n
Neumann_outlet = dg.DGNeumannBC(ds(mark["outlet"]), gN1)
gN2 = (-p_in * dolfin.Identity(mesh.geometry().dim())) * n
Neumann_inlet = dg.DGNeumannBC(ds(mark["inlet"]), gN2)
Dirichlet_wall = dg.DGDirichletBC(ds(mark["wall"]), noslip)

weak_bcs = [Dirichlet_wall, Neumann_inlet, Neumann_outlet]

#Body force term
f = dolfin.Constant([0.0] * mesh.geometry().dim())
model = geopart.stokes.StokesModel(eta=mu, f=f)

#Form and solve Stokes
A, b = dolfin.PETScMatrix(), dolfin.PETScVector()
element_cls.solve_stokes(W, U, (A, b), weak_bcs, model)
uh, ph = element_cls.get_velocity(U), element_cls.get_pressure(U)
Beispiel #29
0
print("Add output-compliance-------")

# Add output-compliance to the PDE problem:
C = density_function / (1 + 8. * (1. - density_function))

E = K * C  # C is the design variable, its values is from 0 to 1

nu = 0.3  # Poisson's ratio
# Th = Th - df.Constant(20.)

lambda_ = E * nu / (1. + nu) / (1 - 2 * nu)
mu = E / 2 / (1 + nu)  #lame's parameters

lambda_ = 2 * mu * lambda_ / (lambda_ + 2 * mu)
# Th = df.Constant(7)
I = df.Identity(len(displacements_function))

# w_ij = 0.5 * (df.grad(displacements_function) + df.grad(displacements_function).T) - ALPHA * I * temperature_function
# sigm = lambda_*df.div(displacements_function)* I + 2*mu*w_ij
# s = sigm - (1./3)*df.tr(sigm)*I
# von_Mises = df.sqrt(3./2*df.inner(s, s))
# von_Mises_form = (1/df.CellVolume(mesh)) * von_Mises * df.TestFunction(density_function_space) * df.dx

# T = df.TensorFunctionSpace(mesh, "CG", 1)
# T.vector.set_local()
T_00 = df.Constant(20)
w_ij = 0.5 * (df.grad(displacements_function) + df.grad(
    displacements_function).T) - C * ALPHA * I * (temperature_function - T_00)
sigm = lambda_ * df.div(displacements_function) * I + 2 * mu * w_ij
s = sigm - (1. / 3) * df.tr(sigm) * I
scalar_ = 5e8
Beispiel #30
0
def stress(u, p, mu):
    return 2 * mu * epsilon(u) - p * df.Identity(len(u))