Beispiel #1
0
def convert_and_create_facet_mesh_function(ifilename, ofilename):
    # First convert the gmsh mesh
    meshconvert.convert2xml(ifilename, ofilename)

    # Now load the created mesh and initialise the required connectivity information
    mesh = Mesh(ofilename)
    mesh.order()

    File(ofilename) << mesh

    D = mesh.topology().dim()
    mesh.init(D - 1, 0)

    # read the data from the gmsh file once again
    dim_count, vertices_used, tags = process_gmsh_elements(ifilename, D - 1)
    # Get the facet-node connectivity information (reshape as a row of node indices per facet)
    facets_as_nodes = mesh.topology()(D - 1, 0)().reshape(mesh.num_facets(), D)

    # Create and initialise the mesh function
    facet_mark_function = MeshFunction('uint', mesh, D - 1)
    facet_mark_function.set_all(0)

    # set the relevant values of the mesh function
    facets_to_check = range(mesh.num_facets())
    for i in range(len(tags)):
        nodes = np.sort(np.array(vertices_used[2 * i:(2 * i + D)]))
        value = tags[i][0]

        if value != 0:
            found = False
            for j in range(len(facets_to_check)):
                index = facets_to_check[j]
                if np.array_equal(facets_as_nodes[index, :], nodes):
                    found = True
                    facets_to_check.pop(j)
                    # set the value of the mesh function
                    facet_mark_function[index] = value
                    break

            if not found:
                raise Exception("The facet (%d) was not found to mark: %s" %
                                (i, nodes))

    # save the mesh function to file
    fname = os.path.splitext(ofilename)[0]
    mesh_function_file = File("%s_%s.xml" % (fname, "facet_regions"))

    mesh_function_file << facet_mark_function
Beispiel #2
0
def convert_and_create_facet_mesh_function ( ifilename, ofilename ):
    # First convert the gmsh mesh
    meshconvert.convert2xml ( ifilename, ofilename )
    
    # Now load the created mesh and initialise the required connectivity information
    mesh = Mesh ( ofilename )
    mesh.order()
    
    File ( ofilename ) << mesh
    
    D = mesh.topology().dim()
    mesh.init(D-1, 0)
    
    # read the data from the gmsh file once again
    dim_count, vertices_used, tags = process_gmsh_elements( ifilename, D-1 )
    # Get the facet-node connectivity information (reshape as a row of node indices per facet)
    facets_as_nodes = mesh.topology()(D-1,0)().reshape ( mesh.num_facets(), D )
    
    # Create and initialise the mesh function
    facet_mark_function = MeshFunction ( 'uint', mesh, D-1 )
    facet_mark_function.set_all( 0 )
    
    # set the relevant values of the mesh function
    facets_to_check = range( mesh.num_facets() )
    for i in range(len(tags)):
        nodes = np.sort(np.array(vertices_used[2*i:(2*i+D)]))
        value  = tags[i][0]
        
        if value != 0:
            found = False
            for j in range(len(facets_to_check)):
                index = facets_to_check[j]
                if np.array_equal(facets_as_nodes[index,:], nodes):
                    found = True;
                    facets_to_check.pop(j)
                    # set the value of the mesh function
                    facet_mark_function[index] = value
                    break;
                
            if not found:
                raise Exception ( "The facet (%d) was not found to mark: %s" % (i, nodes) )
        
    # save the mesh function to file
    fname = os.path.splitext(ofilename)[0]
    mesh_function_file = File("%s_%s.xml" % (fname, "facet_regions"))
    
    mesh_function_file << facet_mark_function
Beispiel #3
0
def convert(ifilename, handler):
    """ Convert from Abaqus.

    The Abaqus format first defines a node block, then there should be a number
    of elements containing these nodes.
    """

    # Dictionary of nodes (maps node id to coordinates)
    nodes = {}

    # Dictionary of elements (maps cell id to list of cell nodes)
    elems = {}

    # Lists of nodes for given name (key)
    node_sets = {}

    # Lists of cells for given name (key)
    cell_sets = {}

    # Lists of surfaces for given name (key) in the format:
    # {'SS1': [set(['SS1_S1', 'S1']), set(['SS1_S4', 'S4'])]},
    # where SS1 is the name of the surface, SS1_S1 is the name of the
    # cell list whose first face is to be selected, ...
    surface_sets = {}

    # Open file Abaqus file
    csv_file = csv.reader(open(ifilename, 'rb'), delimiter=',', skipinitialspace=True)

    node_set_name = None
    generate = None

    # Set intial state state
    state = State.Init

    # Read data from input file
    for l in csv_file:

        # Sanity check
        if (len(l) == 0): print "Ooops, zero length."

        if l[0].startswith('**'): # Pass over comments
            continue
        elif l[0].startswith('*'): # Have a keyword
            state = State.Unknown

            if l[0].lower() == "*heading":
                state = State.ReadHeading

            elif l[0].lower() == "*part":
                part_name = _read_part_name(l)

            elif l[0].lower() == "*end part":
                state = State.Invalid

            elif l[0].lower() == "*node":
                node_set_name = _create_node_list_entry(node_sets, l)
                state = State.ReadNodes

            elif l[0].lower() == "*element":
                cell_type, cell_set_name = _read_element_keywords(cell_sets, l)
                state = State.ReadCells

            elif l[0].lower() == "*nset":
                node_set_name, generate = _read_nset_keywords(node_sets, l)
                state = State.ReadNodeSet

            elif l[0].lower() == "*elset":
                cell_set_name, generate = _read_elset_keywords(cell_sets, l)
                if generate:
                    print "WARNING: generation of *elsets not tested."
                state = State.ReadCellSet

            elif l[0].lower() == "*surface":
                surface_set_name, generate = _read_surface_keywords(surface_sets, l)
                state = State.ReadSurfaceSet

            else:
                print "WARNING: unrecognised Abaqus input keyword:", l[0]
                state = State.Unknown

        else:

            if state == State.ReadHeading:
                model_name = _read_heading(l)

            elif state == State.ReadNodes:
                node_id = int(l[0]) - 1
                coords = [float(c) for c in l[1:]]
                nodes[node_id] = coords
                if node_set_name is not None:
                    node_sets[node_set_name].add(node_id)

            elif state == State.ReadCells:
                cell_id = int(l[0]) - 1
                cell_connectivity = [int(v) - 1 for v in l[1:]]
                elems[cell_id] = cell_connectivity
                if cell_set_name is not None:
                    cell_sets[cell_set_name].add(cell_id)

            elif state == State.ReadNodeSet:

                try:
                    if generate:
                        n0, n1, increment = l
                        node_range = range(int(n0) - 1, int(n1) - 1, int(increment))
                        node_range.append(int(n1) - 1)
                        node_sets[node_set_name].update(node_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        node_range = [int(n) - 1 for n in l]
                        node_sets[node_set_name].update(node_range)
                except:
                    print "WARNING: Non-integer node sets not yet supported."

            elif state == State.ReadCellSet:
                try:
                    if generate:
                        n0, n1, increment = l
                        cell_range = range(int(n0) - 1, int(n1) - 1, int(increment))
                        cell_range.append(int(n1) - 1)
                        cell_sets[cell_set_name].update(cell_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        cell_range = [int(n) - 1 for n in l]
                        cell_sets[cell_set_name].update(cell_range)
                except:
                    print "WARNING: Non-integer element sets not yet supported."

            elif state == State.ReadSurfaceSet:
                # Strip empty term at end of list, if present
                if l[-1] == '': l.pop(-1)
                surface_sets[surface_set_name].update([tuple(l)])

            elif state == State.Invalid: # part
                raise StandardError("Inavlid Abaqus parser state..")


    # Close CSV object
    del csv_file

    # Write data to XML file
    # Note that vertices/cells must be consecutively numbered, which
    # isn't necessarily the case in Abaqus. Therefore we enumerate and
    # translate original IDs to sequence indexes if gaps are present.

    # FIXME
    handler.set_mesh_type("tetrahedron", 3)

    process_facets = len(surface_sets) > 0
    if process_facets:
        try:
            from dolfin import MeshEditor, Mesh
        except ImportError:
            _error("DOLFIN must be installed to handle Abaqus boundary regions")

        mesh = Mesh()
        mesh_editor = MeshEditor()
        mesh_editor.open(mesh, 3, 3)

    node_ids_order = {}
    # Check for gaps in vertex numbering
    node_ids = nodes.keys()
    if len(node_ids) > 0:
        vertex_gap = (min(node_ids) != 0 or max(node_ids) != len(node_ids) - 1)
        for x, y in enumerate(node_ids):
            node_ids_order[y]= x  # Maps Abaqus IDs to Dolfin IDs
    else:
        vertex_gap = True

    # Check for gaps in cell numbering
    elemids = elems.keys()
    if len(elemids) > 0:
        cell_gap = (min(elemids) != 0 or max(elemids) != len(elemids) - 1)
    else:
        cell_gap = True

    # Write vertices to XML file
    handler.start_vertices(len(nodes))
    if process_facets:
        mesh_editor.init_vertices (len(nodes))

    if not vertex_gap:

        for v_id, v_coords in nodes.items():
            handler.add_vertex(v_id, v_coords)
            if process_facets:
                mesh_editor.add_vertex(v_id, np.array(v_coords, dtype=np.float_))

    else:

        for idx, (v_id, v_coords) in enumerate(nodes.items()):
            handler.add_vertex(idx, v_coords)
            if process_facets:
                mesh_editor.add_vertex(idx, np.array(v_coords, dtype=np.float_))

    handler.end_vertices()

    # Write cells to XML file
    handler.start_cells(len(elems))
    if process_facets:
        mesh_editor.init_cells(len(elems))

    if not vertex_gap and not cell_gap:

        for c_index, c_data in elems.items():
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error("Element %s references non-existent node %s" % (c_index, v_id))
            handler.add_cell(c_index, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(c_index, np.array(c_data_tmp, dtype=np.uintp))


    elif not vertex_gap and cell_gap:

        for idx, (c_index, c_data) in enumerate(elems.items()):
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error("Element %s references non-existent node %s" % (c_index, v_id))
            handler.add_cell(idx, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(idx, np.array(c_data_tmp, dtype=np.uintp))

    else:

        for idx, (c_id, c_data) in enumerate(elems.items()):
            c_nodes = []
            for v_id in c_data:
                try: c_nodes.append(node_ids_order[v_id])  
                except ValueError:
                    handler.error("Element %s references non-existent node %s" % (c_id, v_id))
            handler.add_cell(idx, c_nodes)

            if process_facets:
                c_nodes.sort()
                mesh_editor.add_cell(idx, np.array(c_nodes, dtype=np.uintp))

    handler.end_cells()

    # Write MeshValueCollections to XML file
    handler.start_domains()

    # Build a abaqus node ID -> dolfin cell ID map (which is not unique but that is irrelevant here)
    #                           and its local entity.
    if len(node_sets.items()) > 0:
        node_cell_map = {}
        for c_dolfin_index, (c_index, c_data) in enumerate(elems.items()):
            c_data_tmp = np.array(c_data)
            c_data_tmp.sort()
            for local_entity, n_index in enumerate(c_data_tmp):
                node_cell_map[n_index] = (c_dolfin_index, local_entity)

    # Write vertex/node sets
    dim = 0
    for value, (name, node_set) in enumerate(node_sets.items()):
        handler.start_mesh_value_collection(name, dim, len(node_set), "uint")

        for node in node_set:
            try:
                cell, local_entity = node_cell_map[node]
                handler.add_entity_mesh_value_collection(dim, cell, value, local_entity=local_entity)
            except KeyError:
                print "Warning: Boundary references non-existent node %s" % node
        handler.end_mesh_value_collection()

    # Write cell/element sets
    dim = 3
    for name, s in cell_sets.items():
        handler.start_mesh_value_collection(name, dim, len(s), "uint")
        for cell in s:
            handler.add_entity_mesh_value_collection(dim, cell, 0)
        handler.end_mesh_value_collection()

    # Write surface sets
    if process_facets:
        dim = 2
        nodes_facet_map = _nodes_facet_map(mesh)

        data = [int(0)] * mesh.num_facets()
        S1 = [0, 1, 2]
        S2 = [0, 3, 1]
        S3 = [1, 3, 2]
        S4 = [2, 3, 0]
        node_selector = {'S1': S1,
                         'S2': S2,
                         'S3': S3,
                         'S4': S4,
                         }

        for index, (name, s) in enumerate(surface_sets.items()):
            cell_face_list = []
            for cell_set_name, face_index in s:
                cell_face_list += [(cell, face_index) for cell in cell_sets[cell_set_name]]

            for cell, face in cell_face_list:
                cell_nodes = elems[cell]
                # Extract the face nodes
                face_nodes = [cell_nodes[i] for i in node_selector[face]]
                dolfin_face_nodes = [node_ids_order[n] for n in face_nodes]
                dolfin_face_nodes.sort()
                # Convert the face_nodes to dolfin IDs
                face_id = nodes_facet_map[tuple(dolfin_face_nodes)]
                data[face_id] = index + 1

        # Create and initialise the mesh function
        handler.start_meshfunction("facet_region", dim, mesh.num_facets() )
        for index, physical_region in enumerate (data):
            handler.add_entity_meshfunction(index, physical_region)
        handler.end_meshfunction()


    handler.end_domains()
Beispiel #4
0
def gmsh2xml(ifilename, handler):
    """Convert between .gmsh v2.0 format (http://www.geuz.org/gmsh/) and .xml,
    parser implemented as a state machine:

        0 = read 'MeshFormat'
        1 = read  mesh format data
        2 = read 'EndMeshFormat'
        3 = read 'Nodes'
        4 = read  number of vertices
        5 = read  vertices
        6 = read 'EndNodes'
        7 = read 'Elements'
        8 = read  number of cells
        9 = read  cells
        10 = done

    Afterwards, extract physical region numbers if they are defined in
    the mesh file as a mesh function.

    """

    print "Converting from Gmsh format (.msh, .gmsh) to DOLFIN XML format"

    # The dimension of the gmsh element types supported here as well as the dolfin cell types for each dimension
    gmsh_dim = {15: 0, 1: 1, 2: 2, 4: 3}
    cell_type_for_dim = {1: "interval", 2: "triangle", 3: "tetrahedron" }
    # the gmsh element types supported for conversion
    supported_gmsh_element_types = [1, 2, 4, 15]

    # Open files
    ifile = open(ifilename, "r")

    # Scan file for cell type
    cell_type = None
    highest_dim = 0
    line = ifile.readline()
    while line:

        # Remove newline
        if line[-1] == "\n":
            line = line[:-1]

        # Read dimension
        if line.find("$Elements") == 0:

            line = ifile.readline()
            num_elements = int(line)
            if num_elements == 0:
                _error("No elements found in gmsh file.")
            line = ifile.readline()

            # Now iterate through elements to find largest dimension.  Gmsh
            # format might include elements of lower dimensions in the element list.
            # We also need to count number of elements of correct dimensions.
            # Also determine which vertices are not used.
            dim_count = {0: 0, 1: 0, 2: 0, 3: 0}
            vertices_used_for_dim = {0: [], 1: [], 2: [], 3: []}
            # Array used to store gmsh tags for 1D (type 1/line), 2D (type 2/triangular) elements and 3D (type 4/tet) elements
            tags_for_dim = {0: [], 1: [], 2: [], 3: []}

            while line.find("$EndElements") == -1:
                element = line.split()
                elem_type = int(element[1])
                num_tags = int(element[2])
                if elem_type in supported_gmsh_element_types:
                    dim = gmsh_dim[elem_type]
                    if highest_dim < dim:
                        highest_dim = dim
                    node_num_list = [int(node) for node in element[3 + num_tags:]]
                    vertices_used_for_dim[dim].extend(node_num_list)
                    if num_tags > 0:
                        tags_for_dim[dim].append(tuple(int(tag) for tag in element[3:3+num_tags]))
                    dim_count[dim] += 1
                else:
                    #TODO: output a warning here. "gmsh element type %d not supported" % elem_type
                    pass
                line = ifile.readline()
        else:
            # Read next line
            line = ifile.readline()

    # Check that we got the cell type and set num_cells_counted
    if highest_dim == 0:
        _error("Unable to find cells of supported type.")

    num_cells_counted = dim_count[highest_dim]
    vertex_set = set(vertices_used_for_dim[highest_dim])
    vertices_used_for_dim[highest_dim] = None

    vertex_dict = {}
    for n,v in enumerate(vertex_set):
        vertex_dict[v] = n

    # Step to beginning of file
    ifile.seek(0)

    # Set mesh type
    handler.set_mesh_type(cell_type_for_dim[highest_dim], highest_dim)

    # Initialise node list (gmsh does not export all vertexes in order)
    nodelist = {}

    # Current state
    state = 0

    # Write data
    num_vertices_read = 0
    num_cells_read = 0

    # Only import the dolfin objects if facet markings exist
    process_facets = False
    if len(tags_for_dim[highest_dim-1]) > 0:
        # first construct the mesh
        try:
            from dolfin import MeshEditor, Mesh
        except ImportError:
            _error("DOLFIN must be installed to handle Gmsh boundary regions")
        mesh = Mesh()
        mesh_editor = MeshEditor ()
        mesh_editor.open( mesh, highest_dim, highest_dim )
        process_facets = True
    else:
        # TODO: Output a warning or an error here
        me = None

    while state != 10:

        # Read next line
        line = ifile.readline()
        if not line: break

        # Skip comments
        if line[0] == '#':
            continue

        # Remove newline
        if line[-1] == "\n":
            line = line[:-1]

        if state == 0:
            if line == "$MeshFormat":
                state = 1
        elif state == 1:
            (version, file_type, data_size) = line.split()
            state = 2
        elif state == 2:
            if line == "$EndMeshFormat":
                state = 3
        elif state == 3:
            if line == "$Nodes":
                state = 4
        elif state == 4:
            num_vertices = len(vertex_dict)
            handler.start_vertices(num_vertices)
            if process_facets:
                mesh_editor.init_vertices ( num_vertices )
            state = 5
        elif state == 5:
            (node_no, x, y, z) = line.split()
            node_no = int(node_no)
            x,y,z = [float(xx) for xx in (x,y,z)]
            if vertex_dict.has_key(node_no):
                node_no = vertex_dict[node_no]
            else:
                continue
            nodelist[int(node_no)] = num_vertices_read
            handler.add_vertex(num_vertices_read, [x, y, z])
            if process_facets:
                if highest_dim == 1:
                    coords = numpy.array([x])
                elif highest_dim == 2:
                    coords = numpy.array([x, y])
                elif highest_dim == 3:
                    coords = numpy.array([x, y, z])
                mesh_editor.add_vertex(num_vertices_read, coords)

            num_vertices_read +=1

            if num_vertices == num_vertices_read:
                handler.end_vertices()
                state = 6
        elif state == 6:
            if line == "$EndNodes":
                state = 7
        elif state == 7:
            if line == "$Elements":
                state = 8
        elif state == 8:
            handler.start_cells(num_cells_counted)
            if process_facets:
                mesh_editor.init_cells( num_cells_counted )

            state = 9
        elif state == 9:
            element = line.split()
            elem_type = int(element[1])
            num_tags  = int(element[2])
            if elem_type in supported_gmsh_element_types:
                dim = gmsh_dim[elem_type]
            else:
                dim = 0
            if dim == highest_dim:
                node_num_list = [vertex_dict[int(node)] for node in element[3 + num_tags:]]
                for node in node_num_list:
                    if not node in nodelist:
                        _error("Vertex %d of %s %d not previously defined." %
                              (node, cell_type_for_dim[dim], num_cells_read))
                cell_nodes = [nodelist[n] for n in node_num_list]
                handler.add_cell(num_cells_read, cell_nodes)

                if process_facets:
                    cell_nodes = numpy.array([nodelist[n] for n in node_num_list], dtype=numpy.uintp)
                    mesh_editor.add_cell(num_cells_read, cell_nodes)

                num_cells_read +=1

            if num_cells_counted == num_cells_read:
                handler.end_cells()
                if process_facets:
                    mesh_editor.close()
                state = 10
        elif state == 10:
            break

    # Write mesh function based on the Physical Regions defined by
    # gmsh, but only if they are not all zero. All zero physical
    # regions indicate that no physical regions were defined.
    if highest_dim not in [1,2,3]:
        _error("Gmsh tags not supported for dimension %i. Probably a bug" % dim)

    tags = tags_for_dim[highest_dim]
    physical_regions = tuple(tag[0] for tag in tags)
    if not all(tag == 0 for tag in physical_regions):
        handler.start_meshfunction("physical_region", dim, num_cells_counted)
        for i, physical_region in enumerate(physical_regions):
            handler.add_entity_meshfunction(i, physical_region)
        handler.end_meshfunction()

    # Now process the facet markers
    tags = tags_for_dim[highest_dim-1]
    if (len(tags) > 0) and (mesh is not None):
        physical_regions = tuple(tag[0] for tag in tags)
        if not all(tag == 0 for tag in physical_regions):
            mesh.init(highest_dim-1,0)

            # Get the facet-node connectivity information (reshape as a row of node indices per facet)
            if highest_dim==1:
              # for 1d meshes the mesh topology returns the vertex to vertex map, which isn't what we want
              # as facets are vertices
              facets_as_nodes = numpy.array([[i] for i in range(mesh.num_facets())])
            else:
              facets_as_nodes = mesh.topology()(highest_dim-1,0)().reshape ( mesh.num_facets(), highest_dim )

            # Build the reverse map
            nodes_as_facets = {}
            for facet in range(mesh.num_facets()):
              nodes_as_facets[tuple(facets_as_nodes[facet,:])] = facet

            data = [int(0*k) for k in range(mesh.num_facets()) ]
            for i, physical_region in enumerate(physical_regions):
                nodes = [n-1 for n in vertices_used_for_dim[highest_dim-1][highest_dim*i:(highest_dim*i+highest_dim)]]
                nodes.sort()

                if physical_region != 0:
                    try:
                        index = nodes_as_facets[tuple(nodes)]
                        data[index] = physical_region
                    except IndexError:
                        raise Exception ( "The facet (%d) was not found to mark: %s" % (i, nodes) )

#            # Create and initialise the mesh function
            handler.start_meshfunction("facet_region", highest_dim-1, mesh.num_facets() )
            for index, physical_region in enumerate ( data ):
                handler.add_entity_meshfunction(index, physical_region)
            handler.end_meshfunction()

    # Check that we got all data
    if state == 10:
        print "Conversion done"
    else:
       _error("Missing data, unable to convert \n\ Did you use version 2.0 of the gmsh file format?")

    # Close files
    ifile.close()
Beispiel #5
0
def convert(ifilename, handler):
    """ Convert from Abaqus.

    The Abaqus format first defines a node block, then there should be a number
    of elements containing these nodes.
    """

    # Dictionary of nodes (maps node id to coordinates)
    nodes = {}

    # Dictionary of elements (maps cell id to list of cell nodes)
    elems = {}

    # Lists of nodes for given name (key)
    node_sets = {}

    # Lists of cells for given name (key)
    cell_sets = {}

    # Lists of surfaces for given name (key) in the format:
    # {'SS1': [set(['SS1_S1', 'S1']), set(['SS1_S4', 'S4'])]},
    # where SS1 is the name of the surface, SS1_S1 is the name of the
    # cell list whose first face is to be selected, ...
    surface_sets = {}

    # Open file Abaqus file
    file = open(ifilename, 'r')
    csv_file = csv.reader(file, delimiter=',', skipinitialspace=True)

    node_set_name = None
    generate = None

    # Set intial state state
    state = State.Init

    # Read data from input file
    for l in csv_file:

        # Sanity check
        if (len(l) == 0): print("Ooops, zero length.")

        if l[0].startswith('**'):  # Pass over comments
            continue
        elif l[0].startswith('*'):  # Have a keyword
            state = State.Unknown

            if l[0].lower() == "*heading":
                state = State.ReadHeading

            elif l[0].lower() == "*part":
                part_name = _read_part_name(l)

            elif l[0].lower() == "*end part":
                state = State.Invalid

            elif l[0].lower() == "*node":
                node_set_name = _create_node_list_entry(node_sets, l)
                state = State.ReadNodes

            elif l[0].lower() == "*element":
                cell_type, cell_set_name = _read_element_keywords(cell_sets, l)
                state = State.ReadCells

            elif l[0].lower() == "*nset":
                node_set_name, generate = _read_nset_keywords(node_sets, l)
                state = State.ReadNodeSet

            elif l[0].lower() == "*elset":
                cell_set_name, generate = _read_elset_keywords(cell_sets, l)
                if generate:
                    print("WARNING: generation of *elsets not tested.")
                state = State.ReadCellSet

            elif l[0].lower() == "*surface":
                surface_set_name, generate = _read_surface_keywords(
                    surface_sets, l)
                state = State.ReadSurfaceSet

            else:
                print("WARNING: unrecognised Abaqus input keyword:", l[0])
                state = State.Unknown

        else:

            if state == State.ReadHeading:
                model_name = _read_heading(l)

            elif state == State.ReadNodes:
                node_id = int(l[0]) - 1
                coords = [float(c) for c in l[1:]]
                nodes[node_id] = coords
                if node_set_name is not None:
                    node_sets[node_set_name].add(node_id)

            elif state == State.ReadCells:
                cell_id = int(l[0]) - 1
                cell_connectivity = [int(v) - 1 for v in l[1:]]
                elems[cell_id] = cell_connectivity
                if cell_set_name is not None:
                    cell_sets[cell_set_name].add(cell_id)

            elif state == State.ReadNodeSet:

                try:
                    if generate:
                        n0, n1, increment = l
                        node_range = list(
                            range(int(n0) - 1,
                                  int(n1) - 1, int(increment)))
                        node_range.append(int(n1) - 1)
                        node_sets[node_set_name].update(node_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        node_range = [int(n) - 1 for n in l]
                        node_sets[node_set_name].update(node_range)
                except:
                    print("WARNING: Non-integer node sets not yet supported.")

            elif state == State.ReadCellSet:
                try:
                    if generate:
                        n0, n1, increment = l
                        cell_range = list(
                            range(int(n0) - 1,
                                  int(n1) - 1, int(increment)))
                        cell_range.append(int(n1) - 1)
                        cell_sets[cell_set_name].update(cell_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        cell_range = [int(n) - 1 for n in l]
                        cell_sets[cell_set_name].update(cell_range)
                except:
                    print(
                        "WARNING: Non-integer element sets not yet supported.")

            elif state == State.ReadSurfaceSet:
                # Strip empty term at end of list, if present
                if l[-1] == '': l.pop(-1)
                surface_sets[surface_set_name].update([tuple(l)])

            elif state == State.Invalid:  # part
                raise Exception("Inavlid Abaqus parser state..")

    # Close CSV object
    file.close()
    del csv_file

    # Write data to XML file
    # Note that vertices/cells must be consecutively numbered, which
    # isn't necessarily the case in Abaqus. Therefore we enumerate and
    # translate original IDs to sequence indexes if gaps are present.

    # FIXME
    handler.set_mesh_type("tetrahedron", 3)

    process_facets = len(surface_sets) > 0
    if process_facets:
        try:
            from dolfin import MeshEditor, Mesh
        except ImportError:
            _error(
                "DOLFIN must be installed to handle Abaqus boundary regions")

        mesh = Mesh()
        mesh_editor = MeshEditor()
        mesh_editor.open(mesh, 3, 3)

    node_ids_order = {}
    # Check for gaps in vertex numbering
    node_ids = list(iterkeys(nodes))
    if len(node_ids) > 0:
        vertex_gap = (min(node_ids) != 0 or max(node_ids) != len(node_ids) - 1)
        for x, y in enumerate(node_ids):
            node_ids_order[y] = x  # Maps Abaqus IDs to Dolfin IDs
    else:
        vertex_gap = True

    # Check for gaps in cell numbering
    elemids = list(iterkeys(elems))
    if len(elemids) > 0:
        cell_gap = (min(elemids) != 0 or max(elemids) != len(elemids) - 1)
    else:
        cell_gap = True

    # Write vertices to XML file
    handler.start_vertices(len(nodes))
    if process_facets:
        mesh_editor.init_vertices_global(len(nodes), len(nodes))

    if not vertex_gap:

        for v_id, v_coords in list(iteritems(nodes)):
            handler.add_vertex(v_id, v_coords)
            if process_facets:
                mesh_editor.add_vertex(v_id, np.array(v_coords,
                                                      dtype=np.float_))

    else:

        for idx, (v_id, v_coords) in enumerate(iteritems(nodes)):
            handler.add_vertex(idx, v_coords)
            if process_facets:
                mesh_editor.add_vertex(idx, np.array(v_coords,
                                                     dtype=np.float_))

    handler.end_vertices()

    # Write cells to XML file
    handler.start_cells(len(elems))
    if process_facets:
        mesh_editor.init_cells_global(len(elems), len(elems))

    if not vertex_gap and not cell_gap:

        for c_index, c_data in list(iteritems(elems)):
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error(
                        "Element %s references non-existent node %s" %
                        (c_index, v_id))
            handler.add_cell(c_index, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(c_index,
                                     np.array(c_data_tmp, dtype=np.uintp))

    elif not vertex_gap and cell_gap:

        for idx, (c_index, c_data) in enumerate(iteritems(elems)):
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error(
                        "Element %s references non-existent node %s" %
                        (c_index, v_id))
            handler.add_cell(idx, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(idx, np.array(c_data_tmp, dtype=np.uintp))

    else:

        for idx, (c_id, c_data) in enumerate(iteritems(elems)):
            c_nodes = []
            for v_id in c_data:
                try:
                    c_nodes.append(node_ids_order[v_id])
                except ValueError:
                    handler.error(
                        "Element %s references non-existent node %s" %
                        (c_id, v_id))
            handler.add_cell(idx, c_nodes)

            if process_facets:
                c_nodes.sort()
                mesh_editor.add_cell(idx, np.array(c_nodes, dtype=np.uintp))

    handler.end_cells()

    # Write MeshValueCollections to XML file
    handler.start_domains()

    # Build a abaqus node ID -> dolfin cell ID map (which is not unique but that is irrelevant here)
    #                           and its local entity.
    if len(node_sets) > 0:
        node_cell_map = {}
        for c_dolfin_index, (c_index, c_data) in enumerate(iteritems(elems)):
            c_data_tmp = np.array(c_data)
            c_data_tmp.sort()
            for local_entity, n_index in enumerate(c_data_tmp):
                node_cell_map[n_index] = (c_dolfin_index, local_entity)

    # Write vertex/node sets
    dim = 0
    for value, (name, node_set) in enumerate(iteritems(node_sets)):
        handler.start_mesh_value_collection(name, dim, len(node_set), "uint")

        for node in node_set:
            try:
                cell, local_entity = node_cell_map[node]
                handler.add_entity_mesh_value_collection(
                    dim, cell, value, local_entity=local_entity)
            except KeyError:
                print("Warning: Boundary references non-existent node %s" %
                      node)
        handler.end_mesh_value_collection()

    # Write cell/element sets
    dim = 3
    for name, s in list(iteritems(cell_sets)):
        handler.start_mesh_value_collection(name, dim, len(s), "uint")
        for cell in s:
            handler.add_entity_mesh_value_collection(dim, cell, 0)
        handler.end_mesh_value_collection()

    # Write surface sets
    if process_facets:
        dim = 2
        nodes_facet_map = _nodes_facet_map(mesh)

        data = [int(0)] * mesh.num_facets()
        S1 = [0, 1, 2]
        S2 = [0, 3, 1]
        S3 = [1, 3, 2]
        S4 = [2, 3, 0]
        node_selector = {
            'S1': S1,
            'S2': S2,
            'S3': S3,
            'S4': S4,
        }

        for index, (name, s) in enumerate(iteritems(surface_sets)):
            cell_face_list = []
            for cell_set_name, face_index in s:
                cell_face_list += [(cell, face_index)
                                   for cell in cell_sets[cell_set_name]]

            for cell, face in cell_face_list:
                cell_nodes = elems[cell]
                # Extract the face nodes
                face_nodes = [cell_nodes[i] for i in node_selector[face]]
                dolfin_face_nodes = [node_ids_order[n] for n in face_nodes]
                dolfin_face_nodes.sort()
                # Convert the face_nodes to dolfin IDs
                face_id = nodes_facet_map[tuple(dolfin_face_nodes)]
                data[face_id] = index + 1

        # Create and initialise the mesh function
        handler.start_meshfunction("facet_region", dim, mesh.num_facets())
        for index, physical_region in enumerate(data):
            handler.add_entity_meshfunction(index, physical_region)
        handler.end_meshfunction()

    handler.end_domains()
Beispiel #6
0
def gmsh2xml(ifilename, handler):
    """Convert between .gmsh v2.0 format (http://www.geuz.org/gmsh/) and .xml,
    parser implemented as a state machine:

        0 = read 'MeshFormat'
        1 = read  mesh format data
        2 = read 'EndMeshFormat'
        3 = read 'Nodes'
        4 = read  number of vertices
        5 = read  vertices
        6 = read 'EndNodes'
        7 = read 'Elements'
        8 = read  number of cells
        9 = read  cells
        10 = done

    Afterwards, extract physical region numbers if they are defined in
    the mesh file as a mesh function.

    """

    print("Converting from Gmsh format (.msh, .gmsh) to DOLFIN XML format")

    # The dimension of the gmsh element types supported here as well as the dolfin cell types for each dimension
    gmsh_dim = {15: 0, 1: 1, 2: 2, 4: 3}
    cell_type_for_dim = {1: "interval", 2: "triangle", 3: "tetrahedron" }
    # the gmsh element types supported for conversion
    supported_gmsh_element_types = [1, 2, 4, 15]

    # Open files
    ifile = open(ifilename, "r")

    # Scan file for cell type
    cell_type = None
    highest_dim = 0
    line = ifile.readline()
    while line:

        # Remove newline
        line = line.rstrip("\n\r")

        # Read dimension
        if line.find("$Elements") == 0:

            line = ifile.readline()
            num_elements = int(line)
            if num_elements == 0:
                _error("No elements found in gmsh file.")
            line = ifile.readline()

            # Now iterate through elements to find largest dimension.  Gmsh
            # format might include elements of lower dimensions in the element list.
            # We also need to count number of elements of correct dimensions.
            # Also determine which vertices are not used.
            dim_count = {0: 0, 1: 0, 2: 0, 3: 0}
            vertices_used_for_dim = {0: [], 1: [], 2: [], 3: []}
            # Array used to store gmsh tags for 1D (type 1/line), 2D (type 2/triangular) elements and 3D (type 4/tet) elements
            tags_for_dim = {0: [], 1: [], 2: [], 3: []}

            while line.find("$EndElements") == -1:
                element = line.split()
                elem_type = int(element[1])
                num_tags = int(element[2])
                if elem_type in supported_gmsh_element_types:
                    dim = gmsh_dim[elem_type]
                    if highest_dim < dim:
                        highest_dim = dim
                    node_num_list = [int(node) for node in element[3 + num_tags:]]
                    vertices_used_for_dim[dim].extend(node_num_list)
                    if num_tags > 0:
                        tags_for_dim[dim].append(tuple(int(tag) for tag in element[3:3+num_tags]))
                    dim_count[dim] += 1
                else:
                    #TODO: output a warning here. "gmsh element type %d not supported" % elem_type
                    pass
                line = ifile.readline()
        else:
            # Read next line
            line = ifile.readline()

    # Check that we got the cell type and set num_cells_counted
    if highest_dim == 0:
        _error("Unable to find cells of supported type.")

    num_cells_counted = dim_count[highest_dim]
    vertex_set = set(vertices_used_for_dim[highest_dim])
    vertices_used_for_dim[highest_dim] = None

    vertex_dict = {}
    for n,v in enumerate(vertex_set):
        vertex_dict[v] = n

    # Step to beginning of file
    ifile.seek(0)

    # Set mesh type
    handler.set_mesh_type(cell_type_for_dim[highest_dim], highest_dim)

    # Initialise node list (gmsh does not export all vertexes in order)
    nodelist = {}

    # Current state
    state = 0

    # Write data
    num_vertices_read = 0
    num_cells_read = 0

    # Only import the dolfin objects if facet markings exist
    process_facets = False
    if len(tags_for_dim[highest_dim-1]) > 0:
        # first construct the mesh
        try:
            from dolfin import MeshEditor, Mesh
        except ImportError:
            _error("DOLFIN must be installed to handle Gmsh boundary regions")
        mesh = Mesh()
        mesh_editor = MeshEditor ()
        mesh_editor.open( mesh, highest_dim, highest_dim )
        process_facets = True
    else:
        # TODO: Output a warning or an error here
        me = None

    while state != 10:

        # Read next line
        line = ifile.readline()
        if not line: break

        # Skip comments
        if line[0] == '#':
            continue

        # Remove newline
        line = line.rstrip("\n\r")

        if state == 0:
            if line == "$MeshFormat":
                state = 1
        elif state == 1:
            (version, file_type, data_size) = line.split()
            state = 2
        elif state == 2:
            if line == "$EndMeshFormat":
                state = 3
        elif state == 3:
            if line == "$Nodes":
                state = 4
        elif state == 4:
            num_vertices = len(vertex_dict)
            handler.start_vertices(num_vertices)
            if process_facets:
                mesh_editor.init_vertices_global(num_vertices, num_vertices)
            state = 5
        elif state == 5:
            (node_no, x, y, z) = line.split()
            node_no = int(node_no)
            x,y,z = [float(xx) for xx in (x,y,z)]
            if node_no in vertex_dict:
                node_no = vertex_dict[node_no]
            else:
                continue
            nodelist[int(node_no)] = num_vertices_read
            handler.add_vertex(num_vertices_read, [x, y, z])
            if process_facets:
                if highest_dim == 1:
                    coords = numpy.array([x])
                elif highest_dim == 2:
                    coords = numpy.array([x, y])
                elif highest_dim == 3:
                    coords = numpy.array([x, y, z])
                mesh_editor.add_vertex(num_vertices_read, coords)

            num_vertices_read +=1

            if num_vertices == num_vertices_read:
                handler.end_vertices()
                state = 6
        elif state == 6:
            if line == "$EndNodes":
                state = 7
        elif state == 7:
            if line == "$Elements":
                state = 8
        elif state == 8:
            handler.start_cells(num_cells_counted)
            if process_facets:
                mesh_editor.init_cells_global(num_cells_counted, num_cells_counted)

            state = 9
        elif state == 9:
            element = line.split()
            elem_type = int(element[1])
            num_tags  = int(element[2])
            if elem_type in supported_gmsh_element_types:
                dim = gmsh_dim[elem_type]
            else:
                dim = 0
            if dim == highest_dim:
                node_num_list = [vertex_dict[int(node)] for node in element[3 + num_tags:]]
                for node in node_num_list:
                    if not node in nodelist:
                        _error("Vertex %d of %s %d not previously defined." %
                              (node, cell_type_for_dim[dim], num_cells_read))
                cell_nodes = [nodelist[n] for n in node_num_list]
                handler.add_cell(num_cells_read, cell_nodes)

                if process_facets:
                    cell_nodes = numpy.array([nodelist[n] for n in node_num_list], dtype=numpy.uintp)
                    mesh_editor.add_cell(num_cells_read, cell_nodes)

                num_cells_read +=1

            if num_cells_counted == num_cells_read:
                handler.end_cells()
                if process_facets:
                    mesh_editor.close()
                state = 10
        elif state == 10:
            break

    # Write mesh function based on the Physical Regions defined by
    # gmsh, but only if they are not all zero. All zero physical
    # regions indicate that no physical regions were defined.
    if highest_dim not in [1,2,3]:
        _error("Gmsh tags not supported for dimension %i. Probably a bug" % dim)

    tags = tags_for_dim[highest_dim]
    physical_regions = tuple(tag[0] for tag in tags)
    if not all(tag == 0 for tag in physical_regions):
        handler.start_meshfunction("physical_region", dim, num_cells_counted)
        for i, physical_region in enumerate(physical_regions):
            handler.add_entity_meshfunction(i, physical_region)
        handler.end_meshfunction()

    # Now process the facet markers
    tags = tags_for_dim[highest_dim-1]
    if (len(tags) > 0) and (mesh is not None):
        physical_regions = tuple(tag[0] for tag in tags)
        if not all(tag == 0 for tag in physical_regions):
            mesh.init(highest_dim-1,0)

            # Get the facet-node connectivity information (reshape as a row of node indices per facet)
            if highest_dim==1:
              # for 1d meshes the mesh topology returns the vertex to vertex map, which isn't what we want
              # as facets are vertices
              facets_as_nodes = numpy.array([[i] for i in range(mesh.num_facets())])
            else:
              facets_as_nodes = mesh.topology()(highest_dim-1,0)().reshape ( mesh.num_facets(), highest_dim )

            # Build the reverse map
            nodes_as_facets = {}
            for facet in range(mesh.num_facets()):
              nodes_as_facets[tuple(facets_as_nodes[facet,:])] = facet

            data = [int(0*k) for k in range(mesh.num_facets()) ]
            for i, physical_region in enumerate(physical_regions):
                nodes = [n-1 for n in vertices_used_for_dim[highest_dim-1][highest_dim*i:(highest_dim*i+highest_dim)]]
                nodes.sort()

                if physical_region != 0:
                    try:
                        index = nodes_as_facets[tuple(nodes)]
                        data[index] = physical_region
                    except IndexError:
                        raise Exception ( "The facet (%d) was not found to mark: %s" % (i, nodes) )

            # Create and initialise the mesh function
            handler.start_meshfunction("facet_region", highest_dim-1, mesh.num_facets() )
            for index, physical_region in enumerate ( data ):
                handler.add_entity_meshfunction(index, physical_region)
            handler.end_meshfunction()

    # Check that we got all data
    if state == 10:
        print("Conversion done")
    else:
       _error("Missing data, unable to convert \n\ Did you use version 2.0 of the gmsh file format?")

    # Close files
    ifile.close()
Beispiel #7
0
def gmsh_to_dolfin_mesh(ifilename, handler):
    """Convert between .gmsh v2.0 format (http://www.geuz.org/gmsh/) and .xml,
    parser implemented as a state machine:

        0 = read 'MeshFormat'
        1 = read  mesh format data
        2 = read 'EndMeshFormat'
        3 = read 'Nodes'
        4 = read  number of vertices
        5 = read  vertices
        6 = read 'EndNodes'
        7 = read 'Elements'
        8 = read  number of cells
        9 = read  cells
        10 = done

    Afterwards, extract physical region numbers if they are defined in
    the mesh file as a mesh function.

    """

    print "Converting from Gmsh format (.msh, .gmsh) to DOLFIN XML format"

    # The dimension of the gmsh element types supported here as well as the dolfin cell types for each dimension
    gmsh_dim = {1: 1, 2: 2, 4: 3}
    gmsh_cell_type = {1: "interval", 2: "triangle", 3: "tetrahedron"}
    # the gmsh element types supported for conversion
    supported_gmsh_element_types = [1, 2, 4]

    # Open files
    ifile = open(ifilename, "r")

    # Scan file for cell type
    cell_type = None
    highest_dim = 0
    line = ifile.readline()
    while line:

        # Remove newline
        if line[-1] == "\n":
            line = line[:-1]

        # Read dimension
        if line.find("$Elements") == 0:

            line = ifile.readline()
            num_elements = int(line)
            num_cells_counted = 0
            if num_elements == 0:
                _error("No elements found in gmsh file.")
            line = ifile.readline()

            # Now iterate through elements to find largest dimension.  Gmsh
            # format might include elements of lower dimensions in the element list.
            # We also need to count number of elements of correct dimensions.
            # Also determine which vertices are not used.
            dim_count = {1: 0, 2: 0, 3: 0}
            vertices_used = {1: [], 2: [], 3: []}
            # Array used to store gmsh tags for 1D (type 1/line), 2D (type 2/triangular) elements and 3D (type 4/tet) elements
            tags_for_dim = {1: [], 2: [], 3: []}

            while line.find("$EndElements") == -1:
                element = line.split()
                elem_type = int(element[1])
                num_tags = int(element[2])

                if elem_type in supported_gmsh_element_types:
                    dim = gmsh_dim[elem_type]
                    if highest_dim < dim:
                        highest_dim = dim

                    node_num_list = [
                        int(node) for node in element[3 + num_tags:]
                    ]
                    vertices_used[dim].extend(node_num_list)
                    if num_tags > 0:
                        tags_for_dim[dim].append(
                            tuple(int(tag) for tag in element[3:3 + num_tags]))
                    dim_count[dim] += 1
                else:
                    #TODO: output a warning here. "gmsh element type %d not supported" % elem_type
                    pass

                line = ifile.readline()
        else:
            # Read next line
            line = ifile.readline()

    # Check that we got the cell type and set num_cells_counted
    if highest_dim == 0:
        _error("Unable to find cells of supported type.")

    num_cells_counted = dim_count[highest_dim]
    vertex_set = set(vertices_used[highest_dim])
    vertices_used[highest_dim] = None

    vertex_dict = {}
    for n, v in enumerate(vertex_set):
        vertex_dict[v] = n

    # Step to beginning of file
    ifile.seek(0)

    # Set mesh type
    handler.set_mesh_type(gmsh_cell_type[highest_dim], highest_dim)

    # Initialise node list (gmsh does not export all vertexes in order)
    nodelist = {}

    # Current state
    state = 0

    # Write data
    num_vertices_read = 0
    num_cells_read = 0

    # Now handle the facet markings
    if len(tags_for_dim[highest_dim - 1]) > 0:
        # first construct the mesh
        from dolfin import MeshEditor, Mesh
        mesh = Mesh()
        me = MeshEditor()
        me.open(mesh, highest_dim, highest_dim)
    else:
        me = None

    while state != 10:

        # Read next line
        line = ifile.readline()
        if not line: break

        # Skip comments
        if line[0] == '#':
            continue

        # Remove newline
        if line[-1] == "\n":
            line = line[:-1]

        if state == 0:
            if line == "$MeshFormat":
                state = 1
        elif state == 1:
            (version, file_type, data_size) = line.split()
            state = 2
        elif state == 2:
            if line == "$EndMeshFormat":
                state = 3
        elif state == 3:
            if line == "$Nodes":
                state = 4
        elif state == 4:
            num_vertices = len(vertex_dict)
            handler.start_vertices(num_vertices)
            if me is not None:
                me.init_vertices(num_vertices)
            state = 5
        elif state == 5:
            (node_no, x, y, z) = line.split()
            node_no = int(node_no)
            x, y, z = [float(xx) for xx in (x, y, z)]
            if vertex_dict.has_key(node_no):
                node_no = vertex_dict[node_no]
            else:
                continue
            nodelist[int(node_no)] = num_vertices_read
            handler.add_vertex(num_vertices_read, [x, y, z])
            if me is not None:
                if highest_dim == 1:
                    me.add_vertex(num_vertices_read, x)
                elif highest_dim == 2:
                    me.add_vertex(num_vertices_read, x, y)
                elif highest_dim == 3:
                    me.add_vertex(num_vertices_read, x, y, z)

            num_vertices_read += 1

            if num_vertices == num_vertices_read:
                handler.end_vertices()
                state = 6
        elif state == 6:
            if line == "$EndNodes":
                state = 7
        elif state == 7:
            if line == "$Elements":
                state = 8
        elif state == 8:
            handler.start_cells(num_cells_counted)
            if me is not None:
                me.init_cells(num_cells_counted)

            state = 9
        elif state == 9:
            element = line.split()
            elem_type = int(element[1])
            num_tags = int(element[2])
            if elem_type in supported_gmsh_element_types:
                dim = gmsh_dim[elem_type]
            else:
                dim = 0
            if dim == highest_dim:
                node_num_list = [
                    vertex_dict[int(node)] for node in element[3 + num_tags:]
                ]
                for node in node_num_list:
                    if not node in nodelist:
                        _error("Vertex %d of %s %d not previously defined." %
                               (node, gmsh_cell_type[dim], num_cells_read))
                cell_nodes = [nodelist[n] for n in node_num_list]
                handler.add_cell(num_cells_read, cell_nodes)

                if me is not None:
                    me.add_cell(num_cells_read, *cell_nodes)

                num_cells_read += 1

            if num_cells_counted == num_cells_read:
                handler.end_cells()
                if me is not None:
                    me.close()
                state = 10
        elif state == 10:
            break

    # Write mesh function based on the Physical Regions defined by
    # gmsh, but only if they are not all zero. All zero physical
    # regions indicate that no physical regions were defined.
    if highest_dim not in [1, 2, 3]:
        _error("Gmsh tags not supported for dimension %i. Probably a bug" %
               dim)

    tags = tags_for_dim[highest_dim]
    physical_regions = tuple(tag[0] for tag in tags)
    if not all(tag == 0 for tag in physical_regions):
        handler.start_meshfunction("physical_region", dim, num_cells_counted)
        for i, physical_region in enumerate(physical_regions):
            handler.add_entity_meshfunction(i, physical_region)
        handler.end_meshfunction()

    # Now process the facet markers
    tags = tags_for_dim[highest_dim - 1]
    if len(tags) > 0:

        print tags
        print vertices_used[highest_dim - 1]

        physical_regions = tuple(tag[0] for tag in tags)
        if not all(tag == 0 for tag in physical_regions):
            mesh.init(highest_dim - 1, 0)

            # Get the facet-node connectivity information (reshape as a row of node indices per facet)
            facets_as_nodes = mesh.topology()(highest_dim - 1, 0)().reshape(
                mesh.num_facets(), highest_dim)

            #            from dolfin import MeshFunction
            #            # Create and initialise the mesh function
            #            facet_mark_function = MeshFunction ( 'uint', mesh, highest_dim-1 )
            #            facet_mark_function.set_all( 0 )
            handler.start_meshfunction("facet_region", highest_dim - 1,
                                       mesh.num_facets())

            facets_to_check = range(mesh.num_facets())

            data = [int(0 * k) for k in range(len(facets_to_check))]

            for i, physical_region in enumerate(physical_regions):
                nodes = [
                    n - 1
                    for n in vertices_used[highest_dim -
                                           1][2 * i:(2 * i + highest_dim)]
                ]
                nodes.sort()

                if physical_region != 0:
                    found = False
                    for j in range(len(facets_to_check)):
                        index = facets_to_check[j]
                        if all(facets_as_nodes[index, k] == nodes[k]
                               for k in range(len(nodes))):
                            found = True
                            facets_to_check.pop(j)
                            # set the value of the mesh function
                            #                            facet_mark_function[index] = physical_region
                            data[index] = physical_region
                            break

                    if not found:
                        raise Exception(
                            "The facet (%d) was not found to mark: %s" %
                            (i, nodes))


#            fname = os.path.splitext('tmp.xml')[0]
#            mesh_function_file = File("%s_%s.xml" % (fname, "facet_region"))
#            mesh_function_file << facet_mark_function

            for index, physical_region in enumerate(data):
                handler.add_entity_meshfunction(index, physical_region)
            handler.end_meshfunction()

            mf = MeshFunction('uint', mesh, 'tmp_facet_region.xml')
            plot(mf, interactive=True)

    # Check that we got all data
    if state == 10:
        print "Conversion done"
    else:
        _error(
            "Missing data, unable to convert \n\ Did you use version 2.0 of the gmsh file format?"
        )

    # Close files
    ifile.close()