Beispiel #1
0
class Crucible:
    def __init__(self):

        GMSH_EPS = 1.0e-15

        # https://fenicsproject.org/qa/12891/initialize-mesh-from-vertices-connectivities-at-once
        points, cells, point_data, cell_data, _ = meshes.crucible_with_coils.generate(
        )

        # Convert the cell data to 'uint' so we can pick a size_t MeshFunction
        # below as usual.
        for k0 in cell_data:
            for k1 in cell_data[k0]:
                cell_data[k0][k1] = numpy.array(cell_data[k0][k1],
                                                dtype=numpy.dtype("uint"))

        with TemporaryDirectory() as temp_dir:
            tmp_filename = os.path.join(temp_dir, "test.xml")
            meshio.write_points_cells(
                tmp_filename,
                points,
                cells,
                cell_data=cell_data,
                file_format="dolfin-xml",
            )
            self.mesh = Mesh(tmp_filename)
            self.subdomains = MeshFunction(
                "size_t", self.mesh,
                os.path.join(temp_dir, "test_gmsh:physical.xml"))

        self.subdomain_materials = {
            1: my_materials.porcelain,
            2: materials.argon,
            3: materials.gallium_arsenide_solid,
            4: materials.gallium_arsenide_liquid,
            27: materials.air,
        }

        # coils
        for k in range(5, 27):
            self.subdomain_materials[k] = my_materials.ek90

        # Define the subdomains which together form a single coil.
        self.coil_domains = [
            [5, 6, 7, 8, 9],
            [10, 11, 12, 13, 14],
            [15, 16, 17, 18, 19],
            [20, 21, 22, 23],
            [24, 25, 26],
        ]

        self.wpi = 4

        self.submesh_workpiece = SubMesh(self.mesh, self.subdomains, self.wpi)

        # http://fenicsproject.org/qa/2026/submesh-workaround-for-parallel-computation
        # submesh_parallel_bug_fixed = False
        # if submesh_parallel_bug_fixed:
        #     submesh_workpiece = SubMesh(self.mesh, self.subdomains, self.wpi)
        # else:
        #     # To get the mesh in parallel, we need to read it in from a file.
        #     # Writing out can only happen in serial mode, though. :/
        #     base = os.path.join(current_path,
        #                         '../../meshes/2d/crucible-with-coils-submesh'
        #                         )
        #     filename = base + '.xml'
        #     if not os.path.isfile(filename):
        #         warnings.warn(
        #             'Submesh file \'{}\' does not exist. Creating... '.format(
        #             filename
        #             ))
        #         if MPI.size(mpi_comm_world()) > 1:
        #             raise RuntimeError(
        #                 'Can only write submesh in serial mode.'
        #                 )
        #         submesh_workpiece = \
        #             SubMesh(self.mesh, self.subdomains, self.wpi)
        #         output_stream = File(filename)
        #         output_stream << submesh_workpiece
        #     # Read the mesh
        #     submesh_workpiece = Mesh(filename)

        coords = self.submesh_workpiece.coordinates()
        ymin = min(coords[:, 1])
        ymax = max(coords[:, 1])

        # Find the top right point.
        k = numpy.argmax(numpy.sum(coords, 1))
        topright = coords[k, :]

        # Initialize mesh function for boundary domains
        class Left(SubDomain):
            def inside(self, x, on_boundary):
                # Explicitly exclude the lowest and the highest point of the
                # symmetry axis.
                # It is necessary for the consistency of the pressure-Poisson
                # system in the Navier-Stokes solver that the velocity is
                # exactly 0 at the boundary r>0. Hence, at the corner points
                # (r=0, melt-crucible, melt-crystal) we must enforce u=0
                # already and cannot have a component in z-direction.
                return (on_boundary and x[0] < GMSH_EPS
                        and x[1] < ymax - GMSH_EPS and x[1] > ymin + GMSH_EPS)

        class Crucible(SubDomain):
            def inside(self, x, on_boundary):
                return on_boundary and (
                    (x[0] > GMSH_EPS and x[1] < ymax - GMSH_EPS) or
                    (x[0] > topright[0] - GMSH_EPS
                     and x[1] > topright[1] - GMSH_EPS) or
                    (x[0] < GMSH_EPS and x[1] < ymin + GMSH_EPS))

        # At the top right part (boundary melt--gas), slip is allowed, so only
        # n.u=0 is enforced. Very weirdly, the PPE is consistent if and only if
        # the end points of UpperRight are in UpperRight. This contrasts
        # Left(), where the end points must NOT belong to Left().  Judging from
        # the experiments, these settings do the right thing.
        # TODO try to better understand the PPE system/dolfin's boundary
        # settings
        class Upper(SubDomain):
            def inside(self, x, on_boundary):
                return on_boundary and x[1] > ymax - GMSH_EPS

        class UpperRight(SubDomain):
            def inside(self, x, on_boundary):
                return (on_boundary and x[1] > ymax - GMSH_EPS
                        and x[0] > 0.038 - GMSH_EPS)

        # The crystal boundary is taken to reach up to 0.038 where the
        # Dirichlet boundary data is about the melting point of the crystal,
        # 1511K. This setting gives pretty acceptable results when there is no
        # convection except the one induced by buoyancy. Is there is any more
        # stirring going on, though, the end point of the crystal with its
        # fixed temperature of 1511K might be the hottest point globally. This
        # looks rather unphysical.
        # TODO check out alternatives
        class UpperLeft(SubDomain):
            def inside(self, x, on_boundary):
                return (on_boundary and x[1] > ymax - GMSH_EPS
                        and x[0] < 0.038 + GMSH_EPS)

        left = Left()
        crucible = Crucible()
        upper_left = UpperLeft()
        upper_right = UpperRight()

        self.wp_boundaries = MeshFunction(
            "size_t",
            self.submesh_workpiece,
            self.submesh_workpiece.topology().dim() - 1,
        )
        self.wp_boundaries.set_all(0)
        left.mark(self.wp_boundaries, 1)
        crucible.mark(self.wp_boundaries, 2)
        upper_right.mark(self.wp_boundaries, 3)
        upper_left.mark(self.wp_boundaries, 4)

        if DEBUG:
            from dolfin import plot, interactive

            plot(self.wp_boundaries, title="Boundaries")
            interactive()

        submesh_boundary_indices = {
            "left": 1,
            "crucible": 2,
            "upper right": 3,
            "upper left": 4,
        }

        # Boundary conditions for the velocity.
        #
        # [1] Incompressible flow and the finite element method; volume two;
        #     Isothermal Laminar Flow;
        #     P.M. Gresho, R.L. Sani;
        #
        # For the choice of function space, [1] says:
        #     "In 2D, the triangular elements P_2^+P_1 and P_2^+P_{-1} are very
        #      good [...]. [...] If you wish to avoid bubble functions on
        #      triangular elements, P_2P_1 is not bad, and P_2(P_1+P_0) is even
        #      better [...]."
        #
        # It turns out that adding the bubble space significantly hampers the
        # convergence of the Stokes solver and also considerably increases the
        # time it takes to construct the Jacobian matrix of the Navier--Stokes
        # problem if no optimization is applied.
        V_element = FiniteElement("CG", self.submesh_workpiece.ufl_cell(), 2)
        with_bubbles = False
        if with_bubbles:
            V_element += FiniteElement("B", self.submesh_workpiece.ufl_cell(),
                                       2)
        self.W_element = MixedElement(3 * [V_element])
        self.W = FunctionSpace(self.submesh_workpiece, self.W_element)

        rot0 = Expression(("0.0", "0.0", "-2*pi*x[0] * 5.0/60.0"), degree=1)
        # rot0 = (0.0, 0.0, 0.0)
        rot1 = Expression(("0.0", "0.0", "2*pi*x[0] * 5.0/60.0"), degree=1)
        self.u_bcs = [
            DirichletBC(self.W, rot0, crucible),
            DirichletBC(self.W.sub(0), 0.0, left),
            DirichletBC(self.W.sub(2), 0.0, left),
            # Make sure that u[2] is 0 at r=0.
            DirichletBC(self.W, rot1, upper_left),
            DirichletBC(self.W.sub(1), 0.0, upper_right),
        ]
        self.p_bcs = []

        self.P_element = FiniteElement("CG", self.submesh_workpiece.ufl_cell(),
                                       1)
        self.P = FunctionSpace(self.submesh_workpiece, self.P_element)

        self.Q_element = FiniteElement("CG", self.submesh_workpiece.ufl_cell(),
                                       2)
        self.Q = FunctionSpace(self.submesh_workpiece, self.Q_element)

        # Dirichlet.
        # This is a bit of a tough call since the boundary conditions need to
        # be read from a Tecplot file here.
        filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                "data/crucible-boundary.dat")
        data = tecplot_reader.read(filename)
        RZ = numpy.c_[data["ZONE T"]["node data"]["r"],
                      data["ZONE T"]["node data"]["z"]]
        T_vals = data["ZONE T"]["node data"]["temp. [K]"]

        class TecplotDirichletBC(Expression):
            def eval(self, value, x):
                # Find on which edge x sits, and raise exception if it doesn't.
                edge_found = False
                for edge in data["ZONE T"]["element data"]:
                    # Given a point X and an edge X0--X1,
                    #
                    #     (1 - theta) X0 + theta X1,
                    #
                    # the minimum distance is assumed for
                    #
                    #    argmin_theta ||(1-theta) X0  + theta X1 - X||^2
                    #    = <X1 - X0, X - X0> / ||X1 - X0||^2.
                    #
                    # If the distance is 0 and 0<=theta<=1, we found the edge.
                    #
                    # Note that edges are 1-based in Tecplot.
                    X0 = RZ[edge[0] - 1]
                    X1 = RZ[edge[1] - 1]
                    theta = numpy.dot(X1 - X0, x - X0) / numpy.dot(
                        X1 - X0, X1 - X0)
                    diff = (1.0 - theta) * X0 + theta * X1 - x
                    if (numpy.dot(diff, diff) < 1.0e-10 and 0.0 <= theta
                            and theta <= 1.0):
                        # Linear interpolation of the temperature value.
                        value[0] = (1.0 - theta) * T_vals[
                            edge[0] - 1] + theta * T_vals[edge[1] - 1]
                        edge_found = True
                        break
                # This class is supposed to be used for Dirichlet boundary
                # conditions. For some reason, FEniCS also evaluates
                # DirichletBC objects at coordinates which do not sit on the
                # boundary, see
                # <http://fenicsproject.org/qa/1033/dirichletbc-expressions-evaluated-away-from-the-boundary>.
                # The assigned values have no meaning though, so not assigning
                # values[0] here is okay.
                #
                # from matplotlib import pyplot as pp
                # pp.plot(x[0], x[1], 'xg')
                if not edge_found:
                    value[0] = 0.0
                    if False:
                        warnings.warn(
                            "Coordinate ({:e}, {:e}) doesn't sit on edge.".
                            format(x[0], x[1]))
                    # pp.plot(RZ[:, 0], RZ[:, 1], '.k')
                    # pp.plot(x[0], x[1], 'xr')
                    # pp.show()
                    # raise RuntimeError('Input coordinate '
                    #                    '{} is not on boundary.'.format(x))
                return

        tecplot_dbc = TecplotDirichletBC(degree=5)
        self.theta_bcs_d = [DirichletBC(self.Q, tecplot_dbc, upper_left)]
        self.theta_bcs_d_strict = [
            DirichletBC(self.Q, tecplot_dbc, upper_right),
            DirichletBC(self.Q, tecplot_dbc, crucible),
            DirichletBC(self.Q, tecplot_dbc, upper_left),
        ]

        # Neumann
        dTdr_vals = data["ZONE T"]["node data"]["dTempdx [K/m]"]
        dTdz_vals = data["ZONE T"]["node data"]["dTempdz [K/m]"]

        class TecplotNeumannBC(Expression):
            def eval(self, value, x):
                # Same problem as above: This expression is not only evaluated
                # at boundaries.
                for edge in data["ZONE T"]["element data"]:
                    X0 = RZ[edge[0] - 1]
                    X1 = RZ[edge[1] - 1]
                    theta = numpy.dot(X1 - X0, x - X0) / numpy.dot(
                        X1 - X0, X1 - X0)
                    dist = numpy.linalg.norm((1 - theta) * X0 + theta * X1 - x)
                    if dist < 1.0e-5 and 0.0 <= theta and theta <= 1.0:
                        value[0] = (1 - theta) * dTdr_vals[
                            edge[0] - 1] + theta * dTdr_vals[edge[1] - 1]
                        value[1] = (1 - theta) * dTdz_vals[
                            edge[0] - 1] + theta * dTdz_vals[edge[1] - 1]
                        break
                return

            def value_shape(self):
                return (2, )

        tecplot_nbc = TecplotNeumannBC(degree=5)
        n = FacetNormal(self.Q.mesh())
        self.theta_bcs_n = {
            submesh_boundary_indices["upper right"]: dot(n, tecplot_nbc),
            submesh_boundary_indices["crucible"]: dot(n, tecplot_nbc),
        }
        self.theta_bcs_r = {}

        # It seems that the boundary conditions from above are inconsistent in
        # that solving with Dirichlet overall and mixed Dirichlet-Neumann give
        # different results; the value *cannot* correspond to one solution.
        # From looking at the solutions, the pure Dirichlet setting appears
        # correct, so extract the Neumann values directly from that solution.

        # Pick fixed coefficients roughly at the temperature that we expect.
        # This could be made less magic by having the coefficients depend on
        # theta and solving the quasilinear equation.
        temp_estimate = 1550.0

        # Get material parameters
        wp_material = self.subdomain_materials[self.wpi]
        if isinstance(wp_material.specific_heat_capacity, float):
            cp = wp_material.specific_heat_capacity
        else:
            cp = wp_material.specific_heat_capacity(temp_estimate)
        if isinstance(wp_material.density, float):
            rho = wp_material.density
        else:
            rho = wp_material.density(temp_estimate)
        if isinstance(wp_material.thermal_conductivity, float):
            k = wp_material.thermal_conductivity
        else:
            k = wp_material.thermal_conductivity(temp_estimate)

        reference_problem = cyl_heat.Heat(
            self.Q,
            convection=None,
            kappa=k,
            rho=rho,
            cp=cp,
            source=Constant(0.0),
            dirichlet_bcs=self.theta_bcs_d_strict,
        )
        theta_reference = reference_problem.solve_stationary()
        theta_reference.rename("theta", "temperature (Dirichlet)")

        # Create equivalent boundary conditions from theta_ref. This
        # makes sure that the potentially expensive Expression evaluation in
        # theta_bcs_* is replaced by something reasonably cheap.
        self.theta_bcs_d = [
            DirichletBC(bc.function_space(), theta_reference,
                        bc.domain_args[0]) for bc in self.theta_bcs_d
        ]
        # Adapt Neumann conditions.
        n = FacetNormal(self.Q.mesh())
        self.theta_bcs_n = {
            k: dot(n, grad(theta_reference))
            # k: Constant(1000.0)
            for k in self.theta_bcs_n
        }

        if DEBUG:
            # Solve the heat equation with the mixed Dirichlet-Neumann
            # boundary conditions and compare it to the Dirichlet-only
            # solution.
            theta_new = Function(self.Q,
                                 name="temperature (Neumann + Dirichlet)")
            from dolfin import Measure

            ds_workpiece = Measure("ds", subdomain_data=self.wp_boundaries)

            heat = cyl_heat.Heat(
                self.Q,
                convection=None,
                kappa=k,
                rho=rho,
                cp=cp,
                source=Constant(0.0),
                dirichlet_bcs=self.theta_bcs_d,
                neumann_bcs=self.theta_bcs_n,
                robin_bcs=self.theta_bcs_r,
                my_ds=ds_workpiece,
            )
            theta_new = heat.solve_stationary()
            theta_new.rename("theta", "temperature (Neumann + Dirichlet)")

            from dolfin import plot, interactive, errornorm

            print("||theta_new - theta_ref|| = {:e}".format(
                errornorm(theta_new, theta_reference)))
            plot(theta_reference)
            plot(theta_new)
            plot(theta_reference - theta_new, title="theta_ref - theta_new")
            interactive()

        self.background_temp = 1400.0

        # self.omega = 2 * pi * 10.0e3
        self.omega = 2 * pi * 300.0

        return
Beispiel #2
0
        subdomains.mark(cell_domains, 1)

        if MPI.size(mpi_comm_world()) == 1:
            submesh = SubMesh(mesh, cell_domains, 1)
        else:
            submesh = create_submesh(mesh, cell_domains, 1)

        #MPI.barrier(mpi_comm_world())
        #continue
        V = FunctionSpace(submesh, "CG", 2)
        expr = Expression("x[0]*x[1]*x[1]+4*x[2]", degree=2)
        u = project(expr, V)

        MPI.barrier(mpi_comm_world())

        s0 = submesh.size_global(0)
        s3 = submesh.size_global(submesh.ufl_cell().topological_dimension())
        a = assemble(u * dx)
        v = assemble(Constant(1) * dx(domain=submesh))
        if MPI.rank(mpi_comm_world()) == 0:
            print("Num vertices: ", s0)
            print("Num cells: ", s3)
            print("assemble(u*dx): ", a)
            print("Volume: ", v)
        #u = Function(V)
    #File("u.pvd") << u
    #import ipdb; ipdb.set_trace()
    #print mesh.num_cells()
    #print dir(mesh)
    #print mesh.cells()