Beispiel #1
0
def test_mpc_assembly(master_point, degree, celltype,
                      get_assemblers):  # noqa: F811

    _, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5, celltype)
    V = fem.FunctionSpace(mesh, ("Lagrange", degree))

    # Generate reference vector
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    rhs = ufl.inner(f, v) * ufl.dx
    linear_form = fem.form(rhs)

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()
    b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    # Reduce system with global matrix K after assembly
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

    list_timings(comm, [TimingType.wall])
def run_vector_test(mesh, V, degree):
    """Projection into H(div/curl) spaces"""
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[0]**degree
    L = inner(u_exact, v[0]) * dx

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a)
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver (Note: need to use a solver that
        # re-orders to handle pivots, e.g. not the PETSc built-in LU solver)
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType("preonly")
        solver.getPC().setType('lu')
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh[0])**2 * dx
        for i in range(1, mesh.topology.dim):
            M += uh[i]**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Beispiel #3
0
def test_slave_on_same_cell(master_point, degree, celltype,
                            get_assemblers):  # noqa: F811
    assemble_matrix, _ = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 1, 8, celltype)
    V = fem.FunctionSpace(mesh, ("Lagrange", degree))

    # Build master slave map
    s_m_c = {
        np.array([1, 0], dtype=np.float64).tobytes(): {
            np.array([0, 1], dtype=np.float64).tobytes(): 0.43,
            np.array([1, 1], dtype=np.float64).tobytes(): 0.11
        },
        np.array([0, 0], dtype=np.float64).tobytes(): {
            np.array(master_point, dtype=np.float64).tobytes(): 0.69
        }
    }
    with Timer("~TEST: MPC INIT"):
        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_general_constraint(s_m_c)
        mpc.finalize()

    # Test against generated code and general assembler
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    bilinear_form = fem.form(a)

    with Timer("~TEST: Assemble matrix"):
        A_mpc = assemble_matrix(bilinear_form, mpc)

    with Timer("~TEST: Compare with numpy"):
        # Create globally reduced system
        A_org = fem.petsc.assemble_matrix(bilinear_form)
        A_org.assemble()
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc)

    list_timings(mesh.comm, [TimingType.wall])
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)

    with common.Timer("Linear form compile"):
        L = fem.Form(L)

    with common.Timer("Function interpolation"):
        u_bc = Function(V)
        u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    mesh.topology.create_connectivity_all()
    facetdim = mesh.topology.dim - 1
    bndry_facets = np.where(
        np.array(cpp.mesh.compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = DirichletBC(u_bc, bdofs)

    with common.Timer("Vector assembly"):
        b = assemble_vector(L)
        apply_lifting(b, [a], [[bc]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc])

    with common.Timer("Bilinear form compile"):
        a = fem.Form(a)

    with common.Timer("Matrix assembly"):
        A = assemble_matrix(a, [bc])
        A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    with common.Timer("Solve"):
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
def run_dg_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    with common.Timer("Compile forms"):
        a = inner(k * grad(u), grad(v)) * dx_ \
            - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
            - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
            + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
            - inner(k * grad(u), v * n) * ds_ \
            - inner(u * n, k * grad(v)) * ds_ \
            + (alpha / h) * inner(k * u, v) * ds_
        L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
            + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a, [])
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType(PETSc.KSP.Type.PREONLY)
        solver.getPC().setType(PETSc.PC.Type.LU)
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Beispiel #6
0
    history_data["dissipated_energy"].append(dissipated_energy)
    history_data["elastic_energy"].append(elastic_energy)
    history_data["total_energy"].append(elastic_energy + dissipated_energy)
    history_data["solver_data"].append(solver.data)

    with XDMFFile(comm, f"{prefix}.xdmf", "a",
                  encoding=XDMFFile.Encoding.HDF5) as file:
        file.write_function(u, t)
        file.write_function(alpha, t)

    if comm.rank == 0:
        a_file = open(f"{prefix}-data.json", "w")
        json.dump(history_data, a_file)
        a_file.close()

    list_timings(MPI.COMM_WORLD, [dolfinx.common.TimingType.wall])

import pandas as pd
df = pd.DataFrame(history_data)
print(df)

# Viz
xvfb.start_xvfb(wait=0.05)
pyvista.OFF_SCREEN = True

plotter = pyvista.Plotter(
    title="Displacement",
    window_size=[1600, 600],
    shape=(1, 2),
)
_plt = plot_scalar(alpha, plotter, subplot=(0, 0))
def test_pipeline(master_point, get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    d = fem.Constant(mesh, PETSc.ScalarType(1.5))
    c = fem.Constant(mesh, PETSc.ScalarType(2))
    x = ufl.SpatialCoordinate(mesh)
    f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    g = fem.Function(V)
    g.interpolate(lambda x: np.sin(x[0]) * x[1])
    h = fem.Function(V)
    h.interpolate(lambda x: 2 + x[1] * x[0])

    a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = h * ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    A = assemble_matrix(bilinear_form, mpc)
    b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):

        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def test_linearproblem(master_point):

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    d = fem.Constant(mesh, PETSc.ScalarType(1.5))
    c = fem.Constant(mesh, PETSc.ScalarType(2))
    x = ufl.SpatialCoordinate(mesh)
    f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    g = fem.Function(V)
    g.interpolate(lambda x: np.sin(x[0]) * x[1])
    h = fem.Function(V)
    h.interpolate(lambda x: 2 + x[1] * x[0])

    a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = h * ufl.inner(f, v) * ufl.dx
    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(fem.form(a))
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(fem.form(rhs))
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    problem = dolfinx_mpc.LinearProblem(a,
                                        rhs,
                                        mpc,
                                        bcs=[],
                                        petsc_options={
                                            "ksp_type": "preonly",
                                            "pc_type": "lu"
                                        })
    uh = problem.solve()

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem._A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem._b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def test_cell_domains(get_assemblers):  # noqa: F811
    """
    Periodic MPC conditions over integral with different cell subdomains
    """
    assemble_matrix, assemble_vector = get_assemblers
    N = 5
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 15, N)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    def left_side(x):
        return x[0] < 0.5

    tdim = mesh.topology.dim
    num_cells = mesh.topology.index_map(tdim).size_local
    cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells))
    values = np.ones(num_cells, dtype=np.intc)
    # All cells on right side marked one, all other with 1
    values += left_side(cell_midpoints.T)
    ct = meshtags(mesh, mesh.topology.dim, np.arange(num_cells,
                                                     dtype=np.int32), values)

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    c1 = fem.Constant(mesh, PETSc.ScalarType(2))
    c2 = fem.Constant(mesh, PETSc.ScalarType(10))

    dx = ufl.Measure("dx", domain=mesh, subdomain_data=ct)
    a = c1 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(1) +\
        c2 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(2)\
        + 0.01 * ufl.inner(u, v) * dx(1)

    rhs = ufl.inner(x[1], v) * dx(1) + \
        ufl.inner(fem.Constant(mesh, PETSc.ScalarType(1)), v) * dx(2)
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {}
    for i in range(0, N + 1):
        s_m_c[l2b([1, i / N])] = {l2b([0, i / N]): 1}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    # Setup MPC system
    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    mpc.backsubstitution(uh)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)
    list_timings(comm, [TimingType.wall])
Beispiel #10
0
def test_surface_integral_dependency(get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    N = 10
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def top(x):
        return np.isclose(x[1], 1)
    fdim = mesh.topology.dim - 1
    top_facets = locate_entities_boundary(mesh, fdim, top)

    indices = np.array([], dtype=np.intc)
    values = np.array([], dtype=np.intc)
    markers = {3: top_facets}
    for key in markers.keys():
        indices = np.append(indices, markers[key])
        values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc))
    sort = np.argsort(indices)
    mt = meshtags(mesh, mesh.topology.dim - 1, np.array(indices[sort], dtype=np.intc),
                  np.array(values[sort], dtype=np.intc))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt)
    g = fem.Constant(mesh, PETSc.ScalarType((2, 1)))
    h = fem.Constant(mesh, PETSc.ScalarType((3, 2)))
    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(u, v) * ds(3) + ufl.inner(ufl.grad(u), ufl.grad(v)) * ds
    rhs = ufl.inner(g, v) * ds + ufl.inner(h, v) * ds(3)
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create multipoint constraint and assemble system
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()
    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.3}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values

    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

    list_timings(comm, [TimingType.wall])
Beispiel #11
0
def test_cube_contact(generate_hex_boxes, nonslip,
                      get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers
    comm = MPI.COMM_WORLD
    root = 0
    # Generate mesh
    mesh_data = generate_hex_boxes
    mesh, mt = mesh_data
    fdim = mesh.topology.dim - 1
    # Create functionspaces
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Helper for orienting traction

    # Bottom boundary is fixed in all directions
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not nonslip:
        # Helper for orienting traction
        r_matrix = dolfinx_mpc.utils.rotation_matrix(
            [1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    # Top boundary has a given deformation normal to the interface
    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values

    u_top = fem.Function(V)
    u_top.interpolate(top_v)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = fem.dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v)) +
                lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType(
        (0, 0, 0))), v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create LU solver
    solver = PETSc.KSP().create(comm)
    solver.setType("preonly")
    solver.setTolerances(rtol=1.0e-14)
    solver.getPC().setType("lu")

    # Create MPC contact condition and assemble matrices
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    if nonslip:
        with Timer("~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer("~Contact: Create contact constraint"):
            nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    mpc.finalize()

    with Timer("~TEST: Assemble bilinear form"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    with Timer("~MPC: Solve"):
        solver.setOperators(A)
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)

    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = fem.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.x.scatter_forward()
    # u_h.name = "u_{0:.2f}".format(theta)
    # import dolfinx.io as io
    # with io.XDMFFile(comm, "output/rotated_cube3D.xdmf", "w") as outfile:
    #     outfile.write_mesh(mesh)
    #     outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    dolfinx_mpc.utils.log_info(
        "Solving reference problem with global matrix (using numpy)")

    with Timer("~TEST: Assemble bilinear form (unconstrained)"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                          mode=PETSc.ScatterMode.REVERSE)
        fem.petsc.set_bc(L_org, bcs)

    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #12
0
def test_lifting(get_assemblers):  # noqa: F811
    """
    Test MPC lifting operation on a single cell
    """
    assemble_matrix, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = x[1] * ufl.sin(2 * ufl.pi * x[0])
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx

    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create Dirichlet boundary condition
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(2.3)

    def dirichletboundary(x):
        return np.isclose(x[0], 1)

    mesh.topology.create_connectivity(2, 1)
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(u_bc, geometrical_dofs)
    bcs = [bc]

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    # Create multipoint constraint

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}}

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    b = assemble_vector(linear_form, mpc)
    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    fem.petsc.set_bc(b, bcs)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    V_mpc = mpc.function_space
    u_out = fem.Function(V_mpc)
    u_out.vector.array[:] = uh.array

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):

        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)
        # constants = dolfinx_mpc.utils.gather_contants(mpc, root=root)
        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ (L_np)  # - constants)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vecto
            uh_numpy = K @ (d)  # + constants)
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #13
0
def demo_stacked_cubes(outfile: XDMFFile, theta: float, gmsh: bool = False, ct: CellType = CellType.tetrahedron,
                       compare: bool = True, res: float = 0.1, noslip: bool = False):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    mesh_ext = "_gmsh_" if gmsh else "_"
    log_info(f"Run theta:{theta:.2f}, Cell: {celltype}, GMSH {gmsh}, Noslip: {noslip}")

    # Read in mesh
    if gmsh:
        mesh, mt = gmsh_3D_stacked(celltype, theta, res)
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
    else:
        mesh_3D_dolfin(theta, ct, celltype, res)
        MPI.COMM_WORLD.barrier()
        with XDMFFile(MPI.COMM_WORLD, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
            mesh = xdmf.read_mesh(name="mesh")
            tdim = mesh.topology.dim
            fdim = tdim - 1
            mesh.topology.create_connectivity(tdim, tdim)
            mesh.topology.create_connectivity(fdim, tdim)
            mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext}{mesh_ext}"

    # Create functionspaces
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Define boundary conditions

    # Bottom boundary is fixed in all directions
    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))  # type: ignore
    u_bc = np.array((0, ) * mesh.geometry.dim, dtype=PETSc.ScalarType)
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs, V)

    g_vec = np.array([0, 0, -4.25e-1], dtype=PETSc.ScalarType)
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, g_vec)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))  # type: ignore
    bc_top = fem.dirichletbc(g_vec, top_dofs, V)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    # NOTE: Traction deactivated until we have a way of fixing nullspace
    # g = fem.Constant(mesh, PETSc.ScalarType(g_vec))
    # ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    rhs = inner(fem.Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx
    # + inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    mpc = MultiPointConstraint(V)
    if noslip:
        with Timer("~~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer("~Contact: Create contact constraint"):
            nh = create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer("~~Contact: Add data and finialize MPC"):
        mpc.finalize()

    # Create null-space
    null_space = rigid_motions_nullspace(mpc.function_space)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    with Timer(f"~~Contact: Assemble matrix ({num_dofs})"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"~~Contact: Assemble vector ({num_dofs})"):
        b = assemble_vector(linear_form, mpc)

    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    # Solve Linear problem
    opts = PETSc.Options()
    opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    opts["pc_gamg_type"] = "agg"
    opts["pc_gamg_coarse_eq_limit"] = 1000
    opts["pc_gamg_sym_graph"] = True
    opts["mg_levels_ksp_type"] = "chebyshev"
    opts["mg_levels_pc_type"] = "jacobi"
    opts["mg_levels_esteig_ksp_type"] = "cg"
    opts["matptap_via"] = "scalable"
    # opts["pc_gamg_square_graph"] = 2
    # opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Create functionspace and build near nullspace
    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(mesh.comm)
    solver.setOperators(A)
    solver.setFromOptions()

    u_h = fem.Function(mpc.function_space)
    with Timer("~~Contact: Solve"):
        solver.solve(b, u_h.vector)
        u_h.x.scatter_forward()
    with Timer("~~Contact: Backsubstitution"):
        mpc.backsubstitution(u_h.vector)

    it = solver.getIterationNumber()
    unorm = u_h.vector.norm()
    num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
    if mesh.comm.rank == 0:
        num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
        print(f"Number of dofs: {num_dofs}")
        print(f"Number of slaves: {num_slaves}")
        print(f"Number of iterations: {it}")
        print(f"Norm of u {unorm:.5e}")

    # Write solution to file
    u_h.name = f"u_{celltype}_{theta:.2f}{mesh_ext}{type_ext}".format(celltype, theta, type_ext, mesh_ext)
    outfile.write_mesh(mesh)
    outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    if not compare:
        return

    log_info("Solving reference problem with global matrix (using scipy)")
    with Timer("~~Contact: Reference problem"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
        fem.petsc.set_bc(L_org, bcs)

    root = 0
    with Timer("~~Contact: Compare LHS, RHS and solution"):
        compare_mpc_lhs(A_org, A, mpc, root=root)
        compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = gather_PETScMatrix(A_org, root=root)
        K = gather_transformation_matrix(mpc, root=root)
        L_np = gather_PETScVector(L_org, root=root)
        u_mpc = gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(mesh.comm, [TimingType.wall])
Beispiel #14
0
def test_vector_possion(Nx, Ny, slave_space, master_space,
                        get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny)

    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def boundary(x):
        return np.isclose(x.T, [0, 0, 0]).all(axis=1)

    # Define boundary conditions (HAS TO BE NON-MASTER NODES)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bdofsV = fem.locate_dofs_geometrical(V, boundary)
    bc = fem.dirichletbc(u_bc, bdofsV)
    bcs = [bc]

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.as_vector((-5 * x[1], 7 * x[0]))

    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, slave_space, master_space)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = dolfinx_mpc.assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)

    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Generate reference matrices for unconstrained problem
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #15
0
def test_surface_integrals(get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers

    N = 4
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Fixed Dirichlet BC on the left wall
    def left_wall(x):
        return np.isclose(x[0], np.finfo(float).eps)

    fdim = mesh.topology.dim - 1
    left_facets = locate_entities_boundary(mesh, fdim, left_wall)
    bc_dofs = fem.locate_dofs_topological(V, 1, left_facets)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)
    bc = fem.dirichletbc(u_bc, bc_dofs)
    bcs = [bc]

    # Traction on top of domain
    def top(x):
        return np.isclose(x[1], 1)
    top_facets = locate_entities_boundary(mesh, 1, top)
    arg_sort = np.argsort(top_facets)
    mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32))

    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    g = fem.Constant(mesh, PETSc.ScalarType((0, -9.81e2)))

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v))
                + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType((0, 0))), v) * ufl.dx\
        + ufl.inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Setup multipointconstraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()
    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = dolfinx.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.name = "u_mpc"
    # outfile = dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/uh.xdmf", "w")
    # outfile.write_mesh(mesh)
    # outfile.write_function(u_h)
    # outfile.close()

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
    with Timer("~Demo: Verification"):
        dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A,
                                          problem.A,
                                          mpc,
                                          root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b,
                                          problem.b,
                                          mpc,
                                          root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc, rtol=rtol)


if __name__ == "__main__":
    for celltype in [CellType.hexahedron, CellType.tetrahedron]:
        demo_periodic3D(celltype)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])
Beispiel #17
0
def demo_stacked_cubes(theta, ct, noslip, num_refinements, N0, timings=False):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    log_info(f"Run theta: {theta:.2f}, Cell: {celltype:s}, Noslip: {noslip:b}")

    # Read in mesh
    mesh_3D_dolfin(theta=theta,
                   ct=ct,
                   ext=celltype,
                   num_refinements=num_refinements,
                   N0=N0)
    comm.barrier()
    with XDMFFile(comm, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf",
                  "r") as xdmf:
        mesh = xdmf.read_mesh(name="mesh")
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
        mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext:s}"

    # Create functionspaces
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Define boundary conditions
    # Bottom boundary is fixed in all directions
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values

    u_top = Function(V)
    u_top.interpolate(top_v)
    u_top.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT_VALUES,
                             mode=PETSc.ScatterMode.FORWARD)

    top_dofs = locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) +
                lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx

    log_info("Create constraints")

    mpc = MultiPointConstraint(V)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if noslip:
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer(f"{num_dofs}: FacetNormal"):
            nh = create_normal_approximation(V, mt, 4)
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer(f"{num_dofs}: MPC-init"):
        mpc.finalize()
    null_space = rigid_motions_nullspace(mpc.function_space)
    log_info(f"Num dofs: {num_dofs}")

    log_info("Assemble matrix")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer(f"{num_dofs}: Assemble-matrix (C++)"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"{num_dofs}: Assemble-vector (C++)"):
        b = assemble_vector(linear_form, mpc)
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])

    # Solve Linear problem
    opts = PETSc.Options()
    # opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    # opts["pc_gamg_type"] = "agg"
    # opts["pc_gamg_coarse_eq_limit"] = 1000
    # opts["pc_gamg_sym_graph"] = True
    # opts["mg_levels_ksp_type"] = "chebyshev"
    # opts["mg_levels_pc_type"] = "jacobi"
    # opts["mg_levels_esteig_ksp_type"] = "cg"
    # opts["matptap_via"] = "scalable"
    # opts["pc_gamg_square_graph"] = 2
    # opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None  # List all available options
    if timings:
        opts["ksp_view"] = None  # List progress of solver
    # Create functionspace and build near nullspace

    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(comm)
    solver.setOperators(A)
    solver.setFromOptions()
    uh = b.copy()
    uh.set(0)
    log_info("Solve")
    with Timer(f"{num_dofs}: Solve"):
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                       mode=PETSc.ScatterMode.FORWARD)
    log_info("Backsub")
    with Timer(f"{num_dofs}: Backsubstitution"):
        mpc.backsubstitution(uh)

    it = solver.getIterationNumber()

    # Write solution to file
    u_h = Function(mpc.function_space)
    u_h.vector.setArray(uh.array)
    u_h.name = "u"
    with XDMFFile(comm, f"results/bench_contact_{num_dofs}.xdmf",
                  "w") as outfile:
        outfile.write_mesh(mesh)
        outfile.write_function(u_h, 0.0,
                               f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    # Write performance data to file
    if timings:
        log_info("Timings")
        num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
        results_file = None
        num_procs = comm.size
        if comm.rank == 0:
            results_file = open(f"results_bench_{num_dofs}.txt", "w")
            print(f"#Procs: {num_procs}", file=results_file)
            print(f"#Dofs: {num_dofs}", file=results_file)
            print(f"#Slaves: {num_slaves}", file=results_file)
            print(f"#Iterations: {it}", file=results_file)
        operations = [
            "Solve", "Assemble-matrix (C++)", "MPC-init", "Contact-constraint",
            "FacetNormal", "Assemble-vector (C++)", "Backsubstitution"
        ]
        if comm.rank == 0:
            print("Operation  #Calls Avg Min Max", file=results_file)
        for op in operations:
            op_timing = timing(f"{num_dofs}: {op}")
            num_calls = op_timing[0]
            wall_time = op_timing[1]
            avg_time = comm.allreduce(wall_time, op=MPI.SUM) / comm.size
            min_time = comm.allreduce(wall_time, op=MPI.MIN)
            max_time = comm.allreduce(wall_time, op=MPI.MAX)
            if comm.rank == 0:
                print(op,
                      num_calls,
                      avg_time,
                      min_time,
                      max_time,
                      file=results_file)
        list_timings(MPI.COMM_WORLD, [TimingType.wall])