def xtest_third_order_tri(): # *---*---*---* 3--11--10--2 # | \ | | \ | # * * * * 8 7 15 13 # | \ | | \ | # * * * * 9 14 6 12 # | \ | | \ | # *---*---*---* 0--4---5---1 for H in (1.0, 2.0): for Z in (0.0, 0.5): L = 1 points = np.array([ [0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0, 1, 2, 3 [L / 3, 0, 0], [2 * L / 3, 0, 0], # 4, 5 [2 * L / 3, H / 3, 0], [L / 3, 2 * H / 3, 0], # 6, 7 [0, 2 * H / 3, 0], [0, H / 3, 0], # 8, 9 [2 * L / 3, H, Z], [L / 3, H, Z], # 10, 11 [L, H / 3, 0], [L, 2 * H / 3, 0], # 12, 13 [L / 3, H / 3, 0], # 14 [2 * L / 3, 2 * H / 3, 0] ]) # 15 cells = np.array([[0, 1, 3, 4, 5, 6, 7, 8, 9, 14], [1, 2, 3, 12, 13, 10, 11, 7, 6, 15]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, cells, [], degree=3) def e2(x): return x[2] + x[0] * x[1] degree = mesh.geometry.dofmap_layout().degree() # Interpolate function V = FunctionSpace(mesh, ("CG", degree)) u = Function(V) u.interpolate(e2) intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 40})) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 9, 8, 3] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def __init__(self, mesh: Mesh, element: typing.Union[ufl.FiniteElementBase, ElementMetaData], cppV: typing.Optional[_cpp.fem.FunctionSpace] = None, form_compiler_params: dict = {}, jit_params: dict = {}): """Create a finite element function space.""" # Create function space from a UFL element and existing cpp # FunctionSpace if cppV is not None: assert mesh is None ufl_domain = cppV.mesh.ufl_domain() super().__init__(ufl_domain, element) self._cpp_object = cppV return # Initialise the ufl.FunctionSpace if isinstance(element, ufl.FiniteElementBase): super().__init__(mesh.ufl_domain(), element) else: e = ElementMetaData(*element) ufl_element = ufl.FiniteElement(e.family, mesh.ufl_cell(), e.degree, form_degree=e.form_degree) super().__init__(mesh.ufl_domain(), ufl_element) # Compile dofmap and element and create DOLFIN objects (self._ufcx_element, self._ufcx_dofmap), module, code = jit.ffcx_jit( mesh.comm, self.ufl_element(), form_compiler_params=form_compiler_params, jit_params=jit_params) ffi = cffi.FFI() cpp_element = _cpp.fem.FiniteElement( ffi.cast("uintptr_t", ffi.addressof(self._ufcx_element))) cpp_dofmap = _cpp.fem.create_dofmap( mesh.comm, ffi.cast("uintptr_t", ffi.addressof(self._ufcx_dofmap)), mesh.topology, cpp_element) # Initialize the cpp.FunctionSpace self._cpp_object = _cpp.fem.FunctionSpace(mesh, cpp_element, cpp_dofmap)
def TensorFunctionSpace(mesh: Mesh, element: ElementMetaData, shape=None, symmetry: typing.Optional[bool] = None, restriction=None) -> FunctionSpace: """Create tensor finite element (composition of scalar elements) function space.""" e = ElementMetaData(*element) ufl_element = ufl.TensorElement(e.family, mesh.ufl_cell(), e.degree, shape, symmetry) return FunctionSpace(mesh, ufl_element)
def test_second_order_tri(): # Test second order mesh by computing volume of two cells # *-----*-----* 3----6-----2 # | \ | | \ | # | \ | | \ | # * * * 7 8 5 # | \ | | \ | # | \ | | \ | # *-----*-----* 0----4-----1 for H in (1.0, 2.0): for Z in (0.0, 0.5): L = 1 points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z], [0, H / 2, 0], [L / 2, H / 2, 0]]) cells = np.array([[0, 1, 3, 4, 8, 7], [1, 2, 3, 5, 6, 8]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, cells, [], degree=2) def e2(x): return x[2] + x[0] * x[1] # Interpolate function V = FunctionSpace(mesh, ("CG", 2)) u = Function(V) u.interpolate(e2) intu = assemble_scalar( u * dx(mesh, metadata={"quadrature_degree": 20})) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 3, 7] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_second_order_quad(L, H, Z): """ Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *-----* 3--6--2 | | | | | | 7 8 5 | | | | *-----* 0--4--1 """ points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z], [0, H / 2, 0], [L / 2, H / 2, 0], [2 * L, 0, 0], [2 * L, H, Z]]) cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, points, cells, [], degree=2) def e2(x): return x[2] + x[0] * x[1] # Interpolate function V = FunctionSpace(mesh, ("CG", 2)) u = Function(V) u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 3, 7] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_gmsh_input_quad(order): pygmsh = pytest.importorskip("pygmsh") # Parameterize test if gmsh gets wider support R = 1 res = 0.2 if order == 2 else 0.2 algorithm = 2 if order == 2 else 5 element = "quad{0:d}".format(int((order + 1)**2)) geo = pygmsh.opencascade.Geometry() geo.add_raw_code("Mesh.ElementOrder={0:d};".format(order)) geo.add_ball([0, 0, 0], R, char_length=res) geo.add_raw_code("Recombine Surface {1};") geo.add_raw_code("Mesh.Algorithm = {0:d};".format(algorithm)) msh = pygmsh.generate_mesh(geo, verbose=True, dim=2) if order > 2: # Quads order > 3 have a gmsh specific ordering, and has to be # re-mapped msh_to_dolfin = np.array( [0, 3, 11, 10, 1, 2, 6, 7, 4, 9, 12, 15, 5, 8, 13, 14]) cells = np.zeros(msh.cells_dict[element].shape) for i in range(len(cells)): for j in range(len(msh_to_dolfin)): cells[i, j] = msh.cells_dict[element][i, msh_to_dolfin[j]] else: # XDMF does not support higher order quads cells = msh.cells_dict[ element][:, perm_vtk(CellType.quadrilateral, msh.cells_dict[element]. shape[1])] mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, msh.points, cells, [], degree=order) surface = assemble_scalar(1 * dx(mesh)) assert mesh.mpi_comm().allreduce(surface, op=MPI.SUM) == pytest.approx( 4 * np.pi * R * R, rel=1e-5)
def VectorFunctionSpace(mesh: Mesh, element: ElementMetaData, dim=None, restriction=None) -> FunctionSpace: """Create vector finite element (composition of scalar elements) function space.""" e = ElementMetaData(*element) ufl_element = ufl.VectorElement(e.family, mesh.ufl_cell(), e.degree, form_degree=e.form_degree, dim=dim) return FunctionSpace(mesh, ufl_element)
def perform_test(points, cells): mesh = Mesh(MPI.COMM_WORLD, CellType.tetrahedron, points, np.array(cells), []) V = FunctionSpace(mesh, (space_type, order)) f = Function(V) output = [] for dof in range(len(f.vector[:])): f.vector[:] = np.zeros(len(f.vector[:])) f.vector[dof] = 1 points = np.array([[1 / 3, 1 / 3, 1 / 3], [1 / 3, 1 / 3, 1 / 3]]) cells = np.array([0, 1]) result = f.eval(points, cells) normal = np.array([1., 1., 1.]) output.append(result.dot(normal)) return output
def read_mesh(self, ghost_mode=GhostMode.shared_facet, name="mesh", xpath="/Xdmf/Domain") -> Mesh: """Read mesh data from file""" cell_shape, cell_degree = super().read_cell_type(name, xpath) cells = super().read_topology_data(name, xpath) x = super().read_geometry_data(name, xpath) # Construct the geometry map cell = ufl.Cell(cell_shape.name, geometric_dimension=x.shape[1]) # Build the mesh cmap = _cpp.fem.CoordinateElement(cell_shape, cell_degree) mesh = _cpp.mesh.create_mesh(self.comm(), _cpp.graph.AdjacencyList_int64(cells), cmap, x, ghost_mode, _cpp.mesh.create_cell_partitioner()) mesh.name = name domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, cell_degree)) return Mesh.from_cpp(mesh, domain)
def xtest_fourth_order_quad(L, H, Z): """Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *---------* 20-21-22-23-24-41--42--43--44 | | | | | | | 15 16 17 18 19 37 38 39 40 | | | | | | | 10 11 12 13 14 33 34 35 36 | | | | | | | 5 6 7 8 9 29 30 31 32 | | | | | *---------* 0--1--2--3--4--25--26--27--28 """ points = np.array([ [0, 0, 0], [L / 4, 0, 0], [L / 2, 0, 0], # 0 1 2 [3 * L / 4, 0, 0], [L, 0, 0], # 3 4 [0, H / 4, -Z / 3], [L / 4, H / 4, -Z / 3], [L / 2, H / 4, -Z / 3], # 5 6 7 [3 * L / 4, H / 4, -Z / 3], [L, H / 4, -Z / 3], # 8 9 [0, H / 2, 0], [L / 4, H / 2, 0], [L / 2, H / 2, 0], # 10 11 12 [3 * L / 4, H / 2, 0], [L, H / 2, 0], # 13 14 [0, (3 / 4) * H, 0], [L / 4, (3 / 4) * H, 0], # 15 16 [L / 2, (3 / 4) * H, 0], [3 * L / 4, (3 / 4) * H, 0], # 17 18 [L, (3 / 4) * H, 0], [0, H, Z], [L / 4, H, Z], # 19 20 21 [L / 2, H, Z], [3 * L / 4, H, Z], [L, H, Z], # 22 23 24 [(5 / 4) * L, 0, 0], [(6 / 4) * L, 0, 0], # 25 26 [(7 / 4) * L, 0, 0], [2 * L, 0, 0], # 27 28 [(5 / 4) * L, H / 4, -Z / 3], [(6 / 4) * L, H / 4, -Z / 3], # 29 30 [(7 / 4) * L, H / 4, -Z / 3], [2 * L, H / 4, -Z / 3], # 31 32 [(5 / 4) * L, H / 2, 0], [(6 / 4) * L, H / 2, 0], # 33 34 [(7 / 4) * L, H / 2, 0], [2 * L, H / 2, 0], # 35 36 [(5 / 4) * L, 3 / 4 * H, 0], # 37 [(6 / 4) * L, 3 / 4 * H, 0], # 38 [(7 / 4) * L, 3 / 4 * H, 0], [2 * L, 3 / 4 * H, 0], # 39 40 [(5 / 4) * L, H, Z], [(6 / 4) * L, H, Z], # 41 42 [(7 / 4) * L, H, Z], [2 * L, H, Z] ]) # 43 44 # VTK ordering cells = np.array([[ 0, 4, 24, 20, 1, 2, 3, 9, 14, 19, 21, 22, 23, 5, 10, 15, 6, 7, 8, 11, 12, 13, 16, 17, 18 ], [ 4, 28, 44, 24, 25, 26, 27, 32, 36, 40, 41, 42, 43, 9, 14, 19, 29, 30, 31, 33, 34, 35, 37, 38, 39 ]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, points, cells, [], GhostMode.none) def e2(x): return x[2] + x[0] * x[1] V = FunctionSpace(mesh, ("CG", 4)) u = Function(V) u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 5, 10, 15, 20] ref = sympy_scipy(points, nodes, 2 * L, H) assert ref == pytest.approx(intu, rel=1e-5)
def xtest_third_order_quad(L, H, Z): """Test by comparing integration of z+x*y against sympy/scipy integration of a quad element. Z>0 implies curved element. *---------* 3--8--9--2-22-23-17 | | | | | | | 11 14 15 7 26 27 21 | | | | | | | 10 12 13 6 24 25 20 | | | | | *---------* 0--4--5--1-18-19-16 """ points = np.array([ [0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0 1 2 3 [L / 3, 0, 0], [2 * L / 3, 0, 0], # 4 5 [L, H / 3, 0], [L, 2 * H / 3, 0], # 6 7 [L / 3, H, Z], [2 * L / 3, H, Z], # 8 9 [0, H / 3, 0], [0, 2 * H / 3, 0], # 10 11 [L / 3, H / 3, 0], [2 * L / 3, H / 3, 0], # 12 13 [L / 3, 2 * H / 3, 0], [2 * L / 3, 2 * H / 3, 0], # 14 15 [2 * L, 0, 0], [2 * L, H, Z], # 16 17 [4 * L / 3, 0, 0], [5 * L / 3, 0, 0], # 18 19 [2 * L, H / 3, 0], [2 * L, 2 * H / 3, 0], # 20 21 [4 * L / 3, H, Z], [5 * L / 3, H, Z], # 22 23 [4 * L / 3, H / 3, 0], [5 * L / 3, H / 3, 0], # 24 25 [4 * L / 3, 2 * H / 3, 0], [5 * L / 3, 2 * H / 3, 0] ]) # 26 27 # Change to multiple cells when matthews dof-maps work for quads cells = np.array( [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [1, 16, 17, 2, 18, 19, 20, 21, 22, 23, 6, 7, 24, 25, 26, 27]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, points, cells, []) def e2(x): return x[2] + x[0] * x[1] # Interpolate function V = FunctionSpace(mesh, ("CG", 3)) u = Function(V) u.interpolate(e2) intu = assemble_scalar(u * dx(mesh)) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 3, 10, 11] ref = sympy_scipy(points, nodes, 2 * L, H) assert ref == pytest.approx(intu, rel=1e-6)
def test_nth_order_triangle(order): num_nodes = (order + 1) * (order + 2) / 2 cells = np.array([range(int(num_nodes))]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) if order == 1: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000]]) elif order == 2: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.50000, 0.50000, -0.25000], [0.00000, 0.50000, -0.25000]]) elif order == 3: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.33333, 0.00000, 0.00000], [0.66667, 0.00000, 0.00000], [0.66667, 0.33333, -0.11111], [0.33333, 0.66667, 0.11111], [0.00000, 0.66667, 0.11111], [0.00000, 0.33333, -0.11111], [0.33333, 0.33333, -0.11111]]) elif order == 4: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.25000, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.75000, 0.00000, 0.00000], [0.75000, 0.25000, -0.06250], [0.50000, 0.50000, 0.06250], [0.25000, 0.75000, -0.06250], [0.00000, 0.75000, -0.06250], [0.00000, 0.50000, 0.06250], [0.00000, 0.25000, -0.06250], [0.25000, 0.25000, -0.06250], [0.50000, 0.25000, -0.06250], [0.25000, 0.50000, 0.06250]]) elif order == 5: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.20000, 0.00000, 0.00000], [0.40000, 0.00000, 0.00000], [0.60000, 0.00000, 0.00000], [0.80000, 0.00000, 0.00000], [0.80000, 0.20000, -0.04000], [0.60000, 0.40000, 0.04000], [0.40000, 0.60000, -0.04000], [0.20000, 0.80000, 0.04000], [0.00000, 0.80000, 0.04000], [0.00000, 0.60000, -0.04000], [0.00000, 0.40000, 0.04000], [0.00000, 0.20000, -0.04000], [0.20000, 0.20000, -0.04000], [0.60000, 0.20000, -0.04000], [0.20000, 0.60000, -0.04000], [0.40000, 0.20000, -0.04000], [0.40000, 0.40000, 0.04000], [0.20000, 0.40000, 0.04000]]) elif order == 6: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.16667, 0.00000, 0.00000], [0.33333, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.66667, 0.00000, 0.00000], [0.83333, 0.00000, 0.00000], [0.83333, 0.16667, -0.00463], [0.66667, 0.33333, 0.00463], [0.50000, 0.50000, -0.00463], [0.33333, 0.66667, 0.00463], [0.16667, 0.83333, -0.00463], [0.00000, 0.83333, -0.00463], [0.00000, 0.66667, 0.00463], [0.00000, 0.50000, -0.00463], [0.00000, 0.33333, 0.00463], [0.00000, 0.16667, -0.00463], [0.16667, 0.16667, -0.00463], [0.66667, 0.16667, -0.00463], [0.16667, 0.66667, 0.00463], [0.33333, 0.16667, -0.00463], [0.50000, 0.16667, -0.00463], [0.50000, 0.33333, 0.00463], [0.33333, 0.50000, -0.00463], [0.16667, 0.50000, -0.00463], [0.16667, 0.33333, 0.00463], [0.33333, 0.33333, 0.00463]]) elif order == 7: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.14286, 0.00000, 0.00000], [0.28571, 0.00000, 0.00000], [0.42857, 0.00000, 0.00000], [0.57143, 0.00000, 0.00000], [0.71429, 0.00000, 0.00000], [0.85714, 0.00000, 0.00000], [0.85714, 0.14286, -0.02041], [0.71429, 0.28571, 0.02041], [0.57143, 0.42857, -0.02041], [0.42857, 0.57143, 0.02041], [0.28571, 0.71429, -0.02041], [0.14286, 0.85714, 0.02041], [0.00000, 0.85714, 0.02041], [0.00000, 0.71429, -0.02041], [0.00000, 0.57143, 0.02041], [0.00000, 0.42857, -0.02041], [0.00000, 0.28571, 0.02041], [0.00000, 0.14286, -0.02041], [0.14286, 0.14286, -0.02041], [0.71429, 0.14286, -0.02041], [0.14286, 0.71429, -0.02041], [0.28571, 0.14286, -0.02041], [0.42857, 0.14286, -0.02041], [0.57143, 0.14286, -0.02041], [0.57143, 0.28571, 0.02041], [0.42857, 0.42857, -0.02041], [0.28571, 0.57143, 0.02041], [0.14286, 0.57143, 0.02041], [0.14286, 0.42857, -0.02041], [0.14286, 0.28571, 0.02041], [0.28571, 0.28571, 0.02041], [0.42857, 0.28571, 0.02041], [0.28571, 0.42857, -0.02041]]) # Higher order tests are too slow elif order == 8: points = np.array([[0.00000, 0.00000, 0.00000], [1.00000, 0.00000, 0.00000], [0.00000, 1.00000, 0.00000], [0.12500, 0.00000, 0.00000], [0.25000, 0.00000, 0.00000], [0.37500, 0.00000, 0.00000], [0.50000, 0.00000, 0.00000], [0.62500, 0.00000, 0.00000], [0.75000, 0.00000, 0.00000], [0.87500, 0.00000, 0.00000], [0.87500, 0.12500, -0.00195], [0.75000, 0.25000, 0.00195], [0.62500, 0.37500, -0.00195], [0.50000, 0.50000, 0.00195], [0.37500, 0.62500, -0.00195], [0.25000, 0.75000, 0.00195], [0.12500, 0.87500, -0.00195], [0.00000, 0.87500, -0.00195], [0.00000, 0.75000, 0.00195], [0.00000, 0.62500, -0.00195], [0.00000, 0.50000, 0.00195], [0.00000, 0.37500, -0.00195], [0.00000, 0.25000, 0.00195], [0.00000, 0.12500, -0.00195], [0.12500, 0.12500, -0.00195], [0.75000, 0.12500, -0.00195], [0.12500, 0.75000, 0.00195], [0.25000, 0.12500, -0.00195], [0.37500, 0.12500, -0.00195], [0.50000, 0.12500, -0.00195], [0.62500, 0.12500, -0.00195], [0.62500, 0.25000, 0.00195], [0.50000, 0.37500, -0.00195], [0.37500, 0.50000, 0.00195], [0.25000, 0.62500, -0.00195], [0.12500, 0.62500, -0.00195], [0.12500, 0.50000, 0.00195], [0.12500, 0.37500, -0.00195], [0.12500, 0.25000, 0.00195], [0.25000, 0.25000, 0.00195], [0.50000, 0.25000, 0.00195], [0.25000, 0.50000, 0.00195], [0.37500, 0.25000, 0.00195], [0.37500, 0.37500, -0.00195], [0.25000, 0.37500, -0.00195]]) mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, cells, []) # Find nodes corresponding to y axis nodes = [] for j in range(points.shape[0]): if np.isclose(points[j][0], 0): nodes.append(j) def e2(x): return x[2] + x[0] * x[1] # For solution to be in functionspace V = FunctionSpace(mesh, ("CG", max(2, order))) u = Function(V) u.interpolate(e2) quad_order = 30 intu = assemble_scalar(u * dx(metadata={"quadrature_degree": quad_order})) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) ref = scipy_one_cell(points, nodes) assert ref == pytest.approx(intu, rel=3e-3)
def xtest_fourth_order_tri(): L = 1 # *--*--*--*--* 3-21-20-19--2 # | \ | | \ | # * * * * * 10 9 24 23 18 # | \ | | \ | # * * * * * 11 15 8 22 17 # | \ | | \ | # * * * * * 12 13 14 7 16 # | \ | | \ | # *--*--*--*--* 0--4--5--6--1 for H in (1.0, 2.0): for Z in (0.0, 0.5): points = np.array([ [0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z], # 0, 1, 2, 3 [L / 4, 0, 0], [L / 2, 0, 0], [3 * L / 4, 0, 0], # 4, 5, 6 [3 / 4 * L, H / 4, Z / 2], [L / 2, H / 2, 0], # 7, 8 [L / 4, 3 * H / 4, 0], [0, 3 * H / 4, 0], # 9, 10 [0, H / 2, 0], [0, H / 4, Z / 2], # 11, 12 [L / 4, H / 4, Z / 2], [L / 2, H / 4, Z / 2], [L / 4, H / 2, 0], # 13, 14, 15 [L, H / 4, Z / 2], [L, H / 2, 0], [L, 3 * H / 4, 0], # 16, 17, 18 [3 * L / 4, H, Z], [L / 2, H, Z], [L / 4, H, Z], # 19, 20, 21 [3 * L / 4, H / 2, 0], [3 * L / 4, 3 * H / 4, 0], # 22, 23 [L / 2, 3 * H / 4, 0] ] # 24 ) cells = np.array( [[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [1, 2, 3, 16, 17, 18, 19, 20, 21, 9, 8, 7, 22, 23, 24]]) cells = permute_cell_ordering( cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1])) mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, cells, [], degree=4) def e2(x): return x[2] + x[0] * x[1] degree = mesh.geometry.degree() # Interpolate function V = FunctionSpace(mesh, ("CG", degree)) u = Function(V) u.interpolate(e2) intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 50})) intu = mesh.mpi_comm().allreduce(intu, op=MPI.SUM) nodes = [0, 3, 10, 11, 12] ref = sympy_scipy(points, nodes, L, H) assert ref == pytest.approx(intu, rel=1e-4)