# Create function space V = VectorFunctionSpace(mesh, ("Lagrange", 1)) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx L = inner(f, v) * dx u0 = Function(V) with u0.vector.localForm() as bc_local: bc_local.set(0.0) # Set up boundary condition on inner surface bc = DirichletBC(u0, locate_dofs_geometrical(V, boundary)) # Explicitly compile a UFL Form into dolfinx Form form = Form(a, jit_parameters={ "cffi_extra_compile_args": "-Ofast -march=native", "cffi_verbose": True }) # Assemble system, applying boundary conditions and preserving symmetry A = assemble_matrix(form, [bc]) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
# Global time loop for k in range(len(dtimes)): t.value = times[k] dt.value = dtimes[k] if rank == 0: logger.info(79 * "#") logger.info("Time: {:2.2} days.".format(t.value)) logger.info("Step: {}".format(k)) logger.info(79 * "#") if t.value in loading_times: bcs_displ = [ DirichletBC(displ_bc_bottom, bottom_left_dofs), DirichletBC(displ_bc_bottom2, bottom_right_dofs, w0["displ"].function_space), DirichletBC(displ_bc_top2, top_load_dofs, w0["displ"].function_space) ] displ_bc_top2.interpolate(loading_bc) else: bcs_displ = [ DirichletBC(displ_bc_bottom, bottom_left_dofs), DirichletBC(displ_bc_bottom2, bottom_right_dofs, w0["displ"].function_space) ] scale = fecoda.main.solve_displ_system(J[0], F[0], intern_var0, intern_var1, expr_compiled, w0, w1,
# apply the boundary conditions. A method ``locate_dofs_geometrical`` is # provided to extract the boundary degrees of freedom using a # geometrical criterium. In our example, the function space is ``V``, # the value of the boundary condition (0.0) can represented using a # :py:class:`Function <dolfinx.functions.Function>` and the Dirichlet # boundary is defined immediately above. The definition of the Dirichlet # boundary condition then looks as follows: :: # Define boundary condition on x = 0 or x = 1 u0 = Function(V) with u0.vector.localForm() as u0_loc: u0_loc.set(0) facets = locate_entities_boundary( mesh, 1, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))) bc = DirichletBC(u0, locate_dofs_topological(V, 1, facets)) # Next, we want to express the variational problem. First, we need to # specify the trial function :math:`u` and the test function :math:`v`, # both living in the function space :math:`V`. We do this by defining a # :py:class:`TrialFunction <dolfinx.functions.fem.TrialFunction>` and a # :py:class:`TestFunction <dolfinx.functions.fem.TrialFunction>` on the # previously defined :py:class:`FunctionSpace # <dolfinx.fem.FunctionSpace>` ``V``. # # Further, the source :math:`f` and the boundary normal derivative # :math:`g` are involved in the variational forms, and hence we must # specify these. # # With these ingredients, we can write down the bilinear form ``a`` and # the linear form ``L`` (using UFL operators). In summary, this reads ::
def run_scalar_test(mesh, V, degree): """ Manufactured Poisson problem, solving u = x[1]**p, where p is the degree of the Lagrange function space. """ u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map) a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1}) a.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) # Source term x = SpatialCoordinate(mesh) u_exact = x[1]**degree f = -div(grad(u_exact)) # Set quadrature degree for linear form integrand (ignores effect of non-affine map) L = inner(f, v) * dx(metadata={"quadrature_degree": -1}) L.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) with common.Timer("Linear form compile"): L = fem.Form(L) with common.Timer("Function interpolation"): u_bc = Function(V) u_bc.interpolate(lambda x: x[1]**degree) # Create Dirichlet boundary condition mesh.topology.create_connectivity_all() facetdim = mesh.topology.dim - 1 bndry_facets = np.where( np.array(cpp.mesh.compute_boundary_facets(mesh.topology)) == 1)[0] bdofs = locate_dofs_topological(V, facetdim, bndry_facets) assert (len(bdofs) < V.dim) bc = DirichletBC(u_bc, bdofs) with common.Timer("Vector assembly"): b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) with common.Timer("Bilinear form compile"): a = fem.Form(a) with common.Timer("Matrix assembly"): A = assemble_matrix(a, [bc]) A.assemble() # Create LU linear solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) with common.Timer("Solve"): uh = Function(V) solver.solve(b, uh.vector) uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) with common.Timer("Error functional compile"): M = (u_exact - uh)**2 * dx M = fem.Form(M) with common.Timer("Error assembly"): error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM) common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall]) assert np.absolute(error) < 1.0e-14
# It is a stable, standard element pair for the Stokes # equations. Now we can define boundary conditions:: # Extract subdomain facet arrays mf = sub_domains.values mf0 = np.where(mf == 0)[0] mf1 = np.where(mf == 1)[0] # No-slip boundary condition for velocity # x1 = 0, x1 = 1 and around the dolphin noslip = Function(W.sub(0).collapse()) noslip.interpolate(lambda x: np.zeros_like(x[:mesh.geometry.dim])) bdofs = locate_dofs_topological((W.sub(0), noslip.function_space), sub_domains.dim, mf0) bc0 = DirichletBC(noslip, bdofs, W.sub(0)) # Inflow boundary condition for velocity # x0 = 1 def inflow_eval(x): values = np.zeros((2, x.shape[1])) values[0] = -np.sin(x[1] * np.pi) return values inflow = Function(W.sub(0).collapse()) inflow.interpolate(inflow_eval) bdofs1 = locate_dofs_topological((W.sub(0), inflow.function_space),
def test_manufactured_poisson(degree, filename, datadir): """ Manufactured Poisson problem, solving u = x[1]**p, where p is the degree of the Lagrange function space. """ with XDMFFile(MPI.COMM_WORLD, os.path.join(datadir, filename), "r", encoding=XDMFFile.Encoding.ASCII) as xdmf: mesh = xdmf.read_mesh(name="Grid") V = FunctionSpace(mesh, ("Lagrange", degree)) u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx # Get quadrature degree for bilinear form integrand (ignores effect # of non-affine map) a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1}) a.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) # Source term x = SpatialCoordinate(mesh) u_exact = x[1]**degree f = -div(grad(u_exact)) # Set quadrature degree for linear form integrand (ignores effect of # non-affine map) L = inner(f, v) * dx(metadata={"quadrature_degree": -1}) L.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) t0 = time.time() L = fem.Form(L) t1 = time.time() print("Linear form compile time:", t1 - t0) u_bc = Function(V) u_bc.interpolate(lambda x: x[1]**degree) # Create Dirichlet boundary condition mesh.topology.create_connectivity_all() facetdim = mesh.topology.dim - 1 bndry_facets = np.where( np.array(cpp.mesh.compute_boundary_facets(mesh.topology)) == 1)[0] bdofs = locate_dofs_topological(V, facetdim, bndry_facets) assert (len(bdofs) < V.dim()) bc = DirichletBC(u_bc, bdofs) t0 = time.time() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) t1 = time.time() print("Vector assembly time:", t1 - t0) t0 = time.time() a = fem.Form(a) t1 = time.time() print("Bilinear form compile time:", t1 - t0) t0 = time.time() A = assemble_matrix(a, [bc]) A.assemble() t1 = time.time() print("Matrix assembly time:", t1 - t0) # Create LU linear solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve t0 = time.time() uh = Function(V) solver.solve(b, uh.vector) uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) t1 = time.time() print("Linear solver time:", t1 - t0) M = (u_exact - uh)**2 * dx t0 = time.time() M = fem.Form(M) t1 = time.time() print("Error functional compile time:", t1 - t0) t0 = time.time() error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM) t1 = time.time() print("Error assembly time:", t1 - t0) assert np.absolute(error) < 1.0e-14
P2 = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2) P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) V, Q = FunctionSpace(mesh, P2), FunctionSpace(mesh, P1) # We can define boundary conditions:: # No-slip boundary condition for velocity field (`V`) on boundaries # where x = 0, x = 1, and y = 0 noslip = Function(V) with noslip.vector.localForm() as bc_local: bc_local.set(0.0) facets = locate_entities_boundary(mesh, 1, noslip_boundary) bc0 = DirichletBC(noslip, locate_dofs_topological(V, 1, facets)) # Driving velocity condition u = (1, 0) on top boundary (y = 1) lid_velocity = Function(V) lid_velocity.interpolate(lid_velocity_expression) facets = locate_entities_boundary(mesh, 1, lid) bc1 = DirichletBC(lid_velocity, locate_dofs_topological(V, 1, facets)) # Collect Dirichlet boundary conditions bcs = [bc0, bc1] # We now define the bilinear and linear forms corresponding to the weak # mixed formulation of the Stokes equations in a blocked structure::
def amg_solve(N, method): # Elasticity parameters E = 1.0e9 nu = 0.3 mu = E / (2.0 * (1.0 + nu)) lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)) # Stress computation def sigma(v): return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym( grad(v))) * Identity(2) # Define problem mesh = UnitSquareMesh(MPI.COMM_WORLD, N, N) V = VectorFunctionSpace(mesh, 'Lagrange', 1) bc0 = Function(V) with bc0.vector.localForm() as bc_local: bc_local.set(0.0) def boundary(x): return np.full(x.shape[1], True) facetdim = mesh.topology.dim - 1 bndry_facets = locate_entities_boundary(mesh, facetdim, boundary) bdofs = locate_dofs_topological(V.sub(0), V, facetdim, bndry_facets) bc = DirichletBC(bc0, bdofs, V.sub(0)) u = TrialFunction(V) v = TestFunction(V) # Forms a, L = inner(sigma(u), grad(v)) * dx, dot(ufl.as_vector( (1.0, 1.0)), v) * dx # Assemble linear algebra objects A = assemble_matrix(a, [bc]) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) # Create solution function u = Function(V) # Create near null space basis and orthonormalize null_space = build_nullspace(V, u.vector) # Attached near-null space to matrix A.set_near_nullspace(null_space) # Test that basis is orthonormal assert null_space.is_orthonormal() # Create PETSC smoothed aggregation AMG preconditioner, and # create CG solver solver = PETSc.KSP().create(mesh.mpi_comm) solver.setType("cg") # Set matrix operator solver.setOperators(A) # Compute solution and return number of iterations return solver.solve(b, u.vector)
def test_manufactured_poisson(degree, filename, datadir): """ Manufactured Poisson problem, solving u = x[1]**p, where p is the degree of the Lagrange function space. """ with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf: mesh = xdmf.read_mesh(GhostMode.none) V = FunctionSpace(mesh, ("Lagrange", degree)) u, v = TrialFunction(V), TestFunction(V) # Get quadrature degree for bilinear form integrand (ignores effect # of non-affine map) a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1}) a.integrals()[0].metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) # Source term x = SpatialCoordinate(mesh) u_exact = x[1]**degree f = - div(grad(u_exact)) # Set quadrature degree for linear form integrand (ignores effect of # non-affine map) L = inner(f, v) * dx(metadata={"quadrature_degree": -1}) L.integrals()[0].metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) t0 = time.time() L = fem.Form(L) t1 = time.time() print("Linear form compile time:", t1 - t0) u_bc = Function(V) u_bc.interpolate(lambda x: x[1]**degree) bdofs = locate_dofs_geometrical(V, lambda x: np.full(x.shape[1], True)) bc = DirichletBC(u_bc, bdofs) t0 = time.time() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) t1 = time.time() print("Vector assembly time:", t1 - t0) t0 = time.time() a = fem.Form(a) t1 = time.time() print("Bilinear form compile time:", t1 - t0) t0 = time.time() A = assemble_matrix(a, [bc]) A.assemble() t1 = time.time() print("Matrix assembly time:", t1 - t0) # Create LU linear solver solver = PETSc.KSP().create(MPI.comm_world) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve t0 = time.time() uh = Function(V) solver.solve(b, uh.vector) uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) t1 = time.time() print("Linear solver time:", t1 - t0) M = (u_exact - uh)**2 * dx t0 = time.time() M = fem.Form(M) t1 = time.time() print("Error functional compile time:", t1 - t0) t0 = time.time() error = assemble_scalar(M) error = MPI.sum(mesh.mpi_comm(), error) t1 = time.time() print("Error assembly time:", t1 - t0) assert np.absolute(error) < 1.0e-14
# Create function space V = VectorFunctionSpace(mesh, ("Lagrange", 1)) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx L = inner(f, v) * dx u0 = Function(V) with u0.vector.localForm() as bc_local: bc_local.set(0.0) # Set up boundary condition on inner surface bc = DirichletBC(V, u0, boundary) # Assemble system, applying boundary conditions and preserving symmetry) A = assemble_matrix(a, [bc]) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) # Create solution function u = Function(V) # Create near null space basis (required for smoothed aggregation AMG). null_space = build_nullspace(V)
bcs_co2 = [] if times[k] == t1: if rank == 0: logger.info(79 * "!") logger.info("Replacement") with displ_bc.vector.localForm() as localbc: with w0["displ"].vector.localForm() as local: localbc.array[ replaced_part_interface_dofs_W0] = -local.array[ replaced_part_interface_dofs_W0] bcs_displ.append( DirichletBC(displ_bc, replaced_part_interface_dofs_W0)) else: with displ_bc.vector.localForm() as local: local.set(0.0) bcs_displ.append(DirichletBC(displ_bc, leftW0)) bcs_displ.append(DirichletBC(displ_bc, rightW0sub1)) bcs_displ.append(DirichletBC(displ_bc, right_side_dofs_W0sub)) if times[k] == t1: _scale = fecoda.main.solve_displ_system(Joff[0], Foff[0], intern_var0, intern_var1, expr_compiledoff, w0, w1, bcs_displ, dforce, dt, t, k) fecoda.main.post_update(expr_compiledoff, intern_var0, intern_var1,