Beispiel #1
0
def _create_tempdir(request):
    # Get directory name of test_foo.py file
    testfile = request.module.__file__
    testfiledir = os.path.dirname(os.path.abspath(testfile))

    # Construct name test_foo_tempdir from name test_foo.py
    testfilename = os.path.basename(testfile)
    outputname = testfilename.replace(".py", "_tempdir_{}".format(
        worker_id(request)))

    # Get function name test_something from test_foo.py
    function = request.function.__name__

    # Join all of these to make a unique path for this test function
    basepath = os.path.join(testfiledir, outputname)
    path = os.path.join(basepath, function)

    # Add a sequence number to avoid collisions when tests are
    # otherwise parameterized
    if MPI.rank(MPI.comm_world) == 0:
        _create_tempdir._sequencenumber[path] += 1
        sequencenumber = _create_tempdir._sequencenumber[path]
        sequencenumber = MPI.sum(MPI.comm_world, sequencenumber)
    else:
        sequencenumber = MPI.sum(MPI.comm_world, 0)
    path += "__" + str(sequencenumber)

    # Delete and re-create directory on root node
    if MPI.rank(MPI.comm_world) == 0:
        # First time visiting this basepath, delete the old and create
        # a new
        if basepath not in _create_tempdir._basepaths:
            _create_tempdir._basepaths.add(basepath)
            if os.path.exists(basepath):
                shutil.rmtree(basepath)
            # Make sure we have the base path test_foo_tempdir for
            # this test_foo.py file
            if not os.path.exists(basepath):
                os.mkdir(basepath)

        # Delete path from old test run
        if os.path.exists(path):
            shutil.rmtree(path)
        # Make sure we have the path for this test execution:
        # e.g. test_foo_tempdir/test_something__3
        if not os.path.exists(path):
            os.mkdir(path)
    MPI.barrier(MPI.comm_world)

    return path
Beispiel #2
0
def test_save_and_read_mesh_value_collection_with_only_one_marked_entity(
        tempdir):
    ndiv = 2
    filename = os.path.join(tempdir, "mesh_value_collection.h5")
    mesh = UnitCubeMesh(MPI.comm_world, ndiv, ndiv, ndiv)
    mvc = MeshValueCollection("size_t", mesh, 3)
    mesh.create_entities(3)
    if MPI.rank(mesh.mpi_comm()) == 0:
        mvc.set_value(0, 1)

    # write to file
    with HDF5File(mesh.mpi_comm(), filename, 'w') as f:
        f.write(mvc, "/mesh_value_collection")

    # read from file
    with HDF5File(mesh.mpi_comm(), filename, 'r') as f:
        mvc = f.read_mvc_size_t(mesh, "/mesh_value_collection")
        assert MPI.sum(mesh.mpi_comm(), mvc.size()) == 1
        if MPI.rank(mesh.mpi_comm()) == 0:
            assert mvc.get_value(0, 0) == 1
Beispiel #3
0
def test_insert_local(mesh, V):
    dm = V.dofmap
    index_map = dm.index_map
    assert index_map

    sp = cpp.fem.SparsityPatternBuilder.build(mesh.mpi_comm(), mesh,
                                              [dm._cpp_object, dm._cpp_object],
                                              True, False, False)
    sp.assemble()

    sp1 = cpp.la.SparsityPattern(mesh.mpi_comm(), [[sp], [sp]])
    if (MPI.rank(mesh.mpi_comm()) == 0):
        print("\nPattern:")
        print(sp1.str(True))

    sp1 = cpp.la.SparsityPattern(mesh.mpi_comm(), [[sp, sp]])
    if (MPI.rank(mesh.mpi_comm()) == 0):
        print("\nPattern:")
        print(sp1.str(True))

    sp1 = cpp.la.SparsityPattern(mesh.mpi_comm(), [[sp, sp], [sp, sp]])
    if (MPI.rank(mesh.mpi_comm()) == 0):
        print("\nPattern:")
        print(sp1.str(True))
def test_cffi_assembly():
    mesh = UnitSquareMesh(MPI.comm_world, 13, 13)
    V = FunctionSpace(mesh, ("Lagrange", 1))

    if MPI.rank(mesh.mpi_comm()) == 0:
        from cffi import FFI
        ffibuilder = FFI()
        ffibuilder.set_source(
            "_cffi_kernelA", r"""
        #include <math.h>
        #include <stdalign.h>
        void tabulate_tensor_poissonA(double* restrict A, const double* w,
                                    const double* c,
                                    const double* restrict coordinate_dofs,
                                    const int* entity_local_index,
                                    const int* cell_orientation)
        {
        // Precomputed values of basis functions and precomputations
        // FE* dimensions: [entities][points][dofs]
        // PI* dimensions: [entities][dofs][dofs] or [entities][dofs]
        // PM* dimensions: [entities][dofs][dofs]
        alignas(32) static const double FE3_C0_D01_Q1[1][1][2] = { { { -1.0, 1.0 } } };
        // Unstructured piecewise computations
        const double J_c0 = coordinate_dofs[0] * FE3_C0_D01_Q1[0][0][0] + coordinate_dofs[2] * FE3_C0_D01_Q1[0][0][1];
        const double J_c3 = coordinate_dofs[1] * FE3_C0_D01_Q1[0][0][0] + coordinate_dofs[5] * FE3_C0_D01_Q1[0][0][1];
        const double J_c1 = coordinate_dofs[0] * FE3_C0_D01_Q1[0][0][0] + coordinate_dofs[4] * FE3_C0_D01_Q1[0][0][1];
        const double J_c2 = coordinate_dofs[1] * FE3_C0_D01_Q1[0][0][0] + coordinate_dofs[3] * FE3_C0_D01_Q1[0][0][1];
        alignas(32) double sp[20];
        sp[0] = J_c0 * J_c3;
        sp[1] = J_c1 * J_c2;
        sp[2] = sp[0] + -1 * sp[1];
        sp[3] = J_c0 / sp[2];
        sp[4] = -1 * J_c1 / sp[2];
        sp[5] = sp[3] * sp[3];
        sp[6] = sp[3] * sp[4];
        sp[7] = sp[4] * sp[4];
        sp[8] = J_c3 / sp[2];
        sp[9] = -1 * J_c2 / sp[2];
        sp[10] = sp[9] * sp[9];
        sp[11] = sp[8] * sp[9];
        sp[12] = sp[8] * sp[8];
        sp[13] = sp[5] + sp[10];
        sp[14] = sp[6] + sp[11];
        sp[15] = sp[12] + sp[7];
        sp[16] = fabs(sp[2]);
        sp[17] = sp[13] * sp[16];
        sp[18] = sp[14] * sp[16];
        sp[19] = sp[15] * sp[16];
        // UFLACS block mode: preintegrated
        A[0] = 0.5 * sp[19] + 0.5 * sp[18] + 0.5 * sp[18] + 0.5 * sp[17];
        A[1] = -0.5 * sp[19] + -0.5 * sp[18];
        A[2] = -0.5 * sp[18] + -0.5 * sp[17];
        A[3] = -0.5 * sp[19] + -0.5 * sp[18];
        A[4] = 0.5 * sp[19];
        A[5] = 0.5 * sp[18];
        A[6] = -0.5 * sp[18] + -0.5 * sp[17];
        A[7] = 0.5 * sp[18];
        A[8] = 0.5 * sp[17];
        }

        void tabulate_tensor_poissonL(double* restrict A, const double* w,
                                     const double* c,
                                     const double* restrict coordinate_dofs,
                                     const int* entity_local_index,
                                     const int* cell_orientation)
        {
        // Precomputed values of basis functions and precomputations
        // FE* dimensions: [entities][points][dofs]
        // PI* dimensions: [entities][dofs][dofs] or [entities][dofs]
        // PM* dimensions: [entities][dofs][dofs]
        alignas(32) static const double FE4_C0_D01_Q1[1][1][2] = { { { -1.0, 1.0 } } };
        // Unstructured piecewise computations
        const double J_c0 = coordinate_dofs[0] * FE4_C0_D01_Q1[0][0][0] + coordinate_dofs[2] * FE4_C0_D01_Q1[0][0][1];
        const double J_c3 = coordinate_dofs[1] * FE4_C0_D01_Q1[0][0][0] + coordinate_dofs[5] * FE4_C0_D01_Q1[0][0][1];
        const double J_c1 = coordinate_dofs[0] * FE4_C0_D01_Q1[0][0][0] + coordinate_dofs[4] * FE4_C0_D01_Q1[0][0][1];
        const double J_c2 = coordinate_dofs[1] * FE4_C0_D01_Q1[0][0][0] + coordinate_dofs[3] * FE4_C0_D01_Q1[0][0][1];
        alignas(32) double sp[4];
        sp[0] = J_c0 * J_c3;
        sp[1] = J_c1 * J_c2;
        sp[2] = sp[0] + -1 * sp[1];
        sp[3] = fabs(sp[2]);
        // UFLACS block mode: preintegrated
        A[0] = 0.1666666666666667 * sp[3];
        A[1] = 0.1666666666666667 * sp[3];
        A[2] = 0.1666666666666667 * sp[3];
        }
        """)
        ffibuilder.cdef("""
        void tabulate_tensor_poissonA(double* restrict A, const double* w,
                                    const double* c,
                                    const double* restrict coordinate_dofs,
                                    const int* entity_local_index,
                                    const int* cell_orientation);
        void tabulate_tensor_poissonL(double* restrict A, const double* w,
                                    const double* c,
                                    const double* restrict coordinate_dofs,
                                    const int* entity_local_index,
                                    const int* cell_orientation);
        """)

        ffibuilder.compile(verbose=True)

    MPI.barrier(mesh.mpi_comm())
    from _cffi_kernelA import ffi, lib

    a = cpp.fem.Form([V._cpp_object, V._cpp_object])
    ptrA = ffi.cast("intptr_t", ffi.addressof(lib, "tabulate_tensor_poissonA"))
    a.set_tabulate_tensor(FormIntegrals.Type.cell, -1, ptrA)

    L = cpp.fem.Form([V._cpp_object])
    ptrL = ffi.cast("intptr_t", ffi.addressof(lib, "tabulate_tensor_poissonL"))
    L.set_tabulate_tensor(FormIntegrals.Type.cell, -1, ptrL)

    A = dolfinx.fem.assemble_matrix(a)
    A.assemble()
    b = dolfinx.fem.assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    Anorm = A.norm(PETSc.NormType.FROBENIUS)
    bnorm = b.norm(PETSc.NormType.N2)
    assert (np.isclose(Anorm, 56.124860801609124))
    assert (np.isclose(bnorm, 0.0739710713711999))

    list_timings(MPI.comm_world, [TimingType.wall])
Beispiel #5
0
# Set matrix operator
solver.setOperators(A)

# Compute solution
solver.setMonitor(lambda ksp, its, rnorm: print(
    "Iteration: {}, rel. residual: {}".format(its, rnorm)))
solver.solve(b, u.vector)
solver.view()

# Save solution to XDMF format
file = XDMFFile(MPI.comm_world, "elasticity.xdmf")
file.write(u)

unorm = u.vector.norm()
if MPI.rank(mesh.mpi_comm()) == 0:
    print("Solution vector norm:", unorm)

# Save colored mesh partitions in VTK format if running in parallel
# if MPI.size(mesh.mpi_comm()) > 1:
#    File("partitions.pvd") << MeshFunction("size_t", mesh, mesh.topology.dim, \
#                                           MPI.rank(mesh.mpi_comm()))

# Project and write stress field to post-processing file
# W = TensorFunctionSpace(mesh, "Discontinuous Lagrange", 0)
# stress = project(sigma(u), V=W)
# File("stress.pvd") << stress

# Plot solution
# import matplotlib.pyplot as plt
# import dolfinx.plotting
Beispiel #6
0
def test_mesh_construction_pygmsh():

    pygmsh = pytest.importorskip("pygmsh")

    if MPI.rank(MPI.comm_world) == 0:
        geom = pygmsh.opencascade.Geometry()
        geom.add_ball([0.0, 0.0, 0.0], 1.0, char_length=0.2)
        pygmsh_mesh = pygmsh.generate_mesh(geom)
        points, cells = pygmsh_mesh.points, pygmsh_mesh.cells
    else:
        points = np.zeros([0, 3])
        cells = {
            "tetra": np.zeros([0, 4], dtype=np.int64),
            "triangle": np.zeros([0, 3], dtype=np.int64),
            "line": np.zeros([0, 2], dtype=np.int64)
        }

    mesh = Mesh(MPI.comm_world, dolfinx.cpp.mesh.CellType.tetrahedron, points,
                cells['tetra'], [], cpp.mesh.GhostMode.none)
    assert mesh.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 3

    mesh = Mesh(MPI.comm_world, dolfinx.cpp.mesh.CellType.triangle, points,
                cells['triangle'], [], cpp.mesh.GhostMode.none)
    assert mesh.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 2

    mesh = Mesh(MPI.comm_world, dolfinx.cpp.mesh.CellType.interval, points,
                cells['line'], [], cpp.mesh.GhostMode.none)
    assert mesh.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 1

    if MPI.rank(MPI.comm_world) == 0:
        print("Generate mesh")
        geom = pygmsh.opencascade.Geometry()
        geom.add_ball([0.0, 0.0, 0.0], 1.0, char_length=0.2)
        pygmsh_mesh = pygmsh.generate_mesh(
            geom, extra_gmsh_arguments=['-order', '2'])
        points, cells = pygmsh_mesh.points, pygmsh_mesh.cells
        print("End Generate mesh", cells.keys())
    else:
        points = np.zeros([0, 3])
        cells = {
            "tetra10": np.zeros([0, 10], dtype=np.int64),
            "triangle6": np.zeros([0, 6], dtype=np.int64),
            "line3": np.zeros([0, 3], dtype=np.int64)
        }

    mesh = Mesh(MPI.comm_world, dolfinx.cpp.mesh.CellType.tetrahedron, points,
                cells['tetra10'], [], cpp.mesh.GhostMode.none)
    assert mesh.degree() == 2
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 3

    mesh = Mesh(MPI.comm_world, dolfinx.cpp.mesh.CellType.triangle, points,
                cells['triangle6'], [], cpp.mesh.GhostMode.none)
    assert mesh.degree() == 2
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 2
Beispiel #7
0
# Split the mixed solution and collapse
u = w.sub(0).collapse()
p = w.sub(1).collapse()

# We can calculate the :math:`L^2` norms of u and p as follows::

print("Norm of velocity coefficient vector: %.15g" % u.vector.norm())
print("Norm of pressure coefficient vector: %.15g" % p.vector.norm())

# Check pressure norm
assert np.isclose(p.vector.norm(), 4147.69457577)

# Finally, we can save and plot the solutions::

# Save solution in XDMF format
with XDMFFile(MPI.comm_world, "velocity.xdmf") as ufile_xdmf:
    ufile_xdmf.write(u)

with XDMFFile(MPI.comm_world, "pressure.xdmf") as pfile_xdmf:
    pfile_xdmf.write(p)

# Plot solution
plt.figure()
plot(u, title="velocity")

# plt.figure()
plot(p, title="pressure" + str(MPI.rank(mesh.mpi_comm())))

# Display plots
plt.show()