Beispiel #1
0
def test_gmsh_input_quad(order):
    pygmsh = pytest.importorskip("pygmsh")

    # Parameterize test if gmsh gets wider support
    R = 1
    res = 0.2 if order == 2 else 0.2
    algorithm = 2 if order == 2 else 5
    element = "quad{0:d}".format(int((order + 1)**2))

    geo = pygmsh.opencascade.Geometry()
    geo.add_raw_code("Mesh.ElementOrder={0:d};".format(order))
    geo.add_ball([0, 0, 0], R, char_length=res)
    geo.add_raw_code("Recombine Surface {1};")
    geo.add_raw_code("Mesh.Algorithm = {0:d};".format(algorithm))

    msh = pygmsh.generate_mesh(geo, verbose=True, dim=2)

    if order > 2:
        # Quads order > 3 have a gmsh specific ordering, and has to be permuted.
        msh_to_dolfin = np.array([0, 3, 11, 10, 1, 2, 6, 7, 4, 9, 12, 15, 5, 8, 13, 14])
        cells = np.zeros(msh.cells_dict[element].shape)
        for i in range(len(cells)):
            for j in range(len(msh_to_dolfin)):
                cells[i, j] = msh.cells_dict[element][i, msh_to_dolfin[j]]
    else:
        # XDMF does not support higher order quads
        cells = permute_cell_ordering(msh.cells_dict[element], permutation_vtk_to_dolfin(
            CellType.quadrilateral, msh.cells_dict[element].shape[1]))

    mesh = Mesh(MPI.comm_world, CellType.quadrilateral, msh.points, cells,
                [], GhostMode.none)
    surface = assemble_scalar(1 * dx(mesh))

    assert MPI.sum(mesh.mpi_comm(), surface) == pytest.approx(4 * np.pi * R * R, rel=1e-5)
Beispiel #2
0
def test_volume_quadrilateralR3(coordinates):
    mesh = Mesh(MPI.comm_world, CellType.quadrilateral,
                numpy.array(coordinates, dtype=numpy.float64),
                numpy.array([[0, 1, 2, 3]], dtype=numpy.int32), [],
                cpp.mesh.GhostMode.none)
    mesh.create_connectivity_all()
    assert cpp.mesh.volume_entities(mesh, [0], mesh.topology.dim) == 1.0
Beispiel #3
0
def test_higher_order_coordinate_map(points, celltype, order):
    """Computes physical coordinates of a cell, based on the coordinate map."""
    cells = np.array([range(len(points))])
    mesh = Mesh(MPI.COMM_WORLD, celltype, points, cells, [], degree=order)

    V = FunctionSpace(mesh, ("Lagrange", 2))
    X = V.element.dof_reference_coordinates()
    coord_dofs = mesh.geometry.dofmap
    x_g = mesh.geometry.x

    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    x_coord_new = np.zeros([len(points), mesh.geometry.dim])

    i = 0
    for node in range(len(points)):
        x_coord_new[i] = x_g[coord_dofs.links(0)[node], :mesh.geometry.dim]
        i += 1
    x = np.zeros(X.shape)
    cmap.push_forward(x, X, x_coord_new)

    assert(np.allclose(x[:, 0], X[:, 0]))
    assert(np.allclose(x[:, 1], 2 * X[:, 1]))

    if mesh.geometry.dim == 3:
        assert(np.allclose(x[:, 2], 3 * X[:, 2]))
Beispiel #4
0
def xtest_mesh_order_unchanged_hexahedron():
    points = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1],
              [0, 1, 1], [1, 1, 1]]
    cells = [[0, 1, 2, 3, 4, 5, 6, 7]]
    mesh = Mesh(MPI.COMM_WORLD, CellType.hexahedron, points, cells, [],
                cpp.mesh.GhostMode.none)
    assert (mesh.cells()[0] == cells[0]).all()
Beispiel #5
0
def test_higher_order_coordinate_map(points, celltype):
    """
    Computes physical coordinates of a cell, based on the coordinate map.
    """
    cells = np.array([range(len(points))])
    mesh = Mesh(MPI.comm_world, celltype, points, cells, [], GhostMode.none)
    V = FunctionSpace(mesh, ("Lagrange", mesh.degree()))

    X = V.element.dof_reference_coordinates()
    coord_dofs = mesh.coordinate_dofs().entity_points()
    x_g = mesh.geometry.points

    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    x_coord_new = np.zeros([len(points), mesh.geometry.dim])

    i = 0
    for node in range(len(points)):
        x_coord_new[i] = x_g[coord_dofs[0, node], :mesh.geometry.dim]
        i += 1

    x = np.zeros(X.shape)
    cmap.push_forward(x, X, x_coord_new)

    assert (np.allclose(x[:, 0], X[:, 0]))
    assert (np.allclose(x[:, 1], 2 * X[:, 1]))

    if mesh.geometry.dim == 3:
        assert (np.allclose(x[:, 2], 3 * X[:, 2]))
Beispiel #6
0
def test_quadrilateral_dof_ordering(space_type):
    """Checks that dofs on shared quadrilateral edges match up"""
    if MPI.COMM_WORLD.rank == 0:
        # Create a quadrilateral mesh
        N = 10
        temp_points = np.array([[x / 2, y / 2] for x in range(N)
                                for y in range(N)])

        order = [i for i, j in enumerate(temp_points)]
        shuffle(order)
        points = np.zeros(temp_points.shape)
        for i, j in enumerate(order):
            points[j] = temp_points[i]

        cells = []
        for x in range(N - 1):
            for y in range(N - 1):
                a = N * y + x
                cell = [order[i] for i in [a, a + 1, a + N, a + N + 1]]
                cells.append(cell)

        # On process 0, input mesh data and distribute to other
        # processes
        mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, points,
                    np.array(cells), [])
    else:
        # On other processes, accept distributed data
        mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, np.ndarray((0, 2)),
                    np.ndarray((0, 4)), [])

    V = FunctionSpace(mesh, space_type)
    dofmap = V.dofmap

    edges = {}

    # Get coordinates of dofs and edges and check that they are the same
    # for each global dof number
    X = V.element.dof_reference_coordinates()
    coord_dofs = mesh.geometry.dofmap
    x_g = mesh.geometry.x
    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    for cell_n in range(coord_dofs.num_nodes):
        dofs = dofmap.cell_dofs(cell_n)

        x_coord_new = np.zeros([4, 2])
        for v in range(4):
            x_coord_new[v] = x_g[coord_dofs.links(cell_n)[v], :2]
        x = X.copy()
        cmap.push_forward(x, X, x_coord_new)

        edge_dofs_local = []
        for i in range(4):
            edge_dofs_local += list(dofmap.dof_layout.entity_dofs(1, i))
        edge_dofs = [dofs[i] for i in edge_dofs_local]
        for i, j in zip(edge_dofs, x[edge_dofs_local]):
            if i in edges:
                assert np.allclose(j, edges[i])
            else:
                edges[i] = j
def test_triangle_mesh():
    mesh = Mesh(
        MPI.comm_world, CellType.triangle,
        numpy.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]], dtype=numpy.float64),
        numpy.array([[0, 1, 2]], dtype=numpy.int32), [],
        cpp.mesh.GhostMode.none)
    assert mesh.num_entities_global(0) == 3
    assert mesh.num_entities_global(2) == 1
Beispiel #8
0
def test_third_order_tri():
    #  *---*---*---*   3--11--10--2
    #  | \         |   | \        |
    #  *   *   *   *   8   7  15  13
    #  |     \     |   |    \     |
    #  *  *    *   *   9  14  6   12
    #  |         \ |   |        \ |
    #  *---*---*---*   0--4---5---1
    for H in (1.0, 2.0):
        for Z in (0.0, 0.5):
            L = 1
            points = np.array([
                [0, 0, 0],
                [L, 0, 0],
                [L, H, Z],
                [0, H, Z],  # 0, 1, 2, 3
                [L / 3, 0, 0],
                [2 * L / 3, 0, 0],  # 4, 5
                [2 * L / 3, H / 3, 0],
                [L / 3, 2 * H / 3, 0],  # 6, 7
                [0, 2 * H / 3, 0],
                [0, H / 3, 0],  # 8, 9
                [2 * L / 3, H, Z],
                [L / 3, H, Z],  # 10, 11
                [L, H / 3, 0],
                [L, 2 * H / 3, 0],  # 12, 13
                [L / 3, H / 3, 0],  # 14
                [2 * L / 3, 2 * H / 3, 0]
            ])  # 15
            cells = np.array([[0, 1, 3, 4, 5, 6, 7, 8, 9, 14],
                              [1, 2, 3, 12, 13, 10, 11, 7, 6, 15]])
            cells = permute_cell_ordering(
                cells,
                permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1]))
            mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [],
                        GhostMode.none)

            def e2(x):
                return x[2] + x[0] * x[1]

            degree = mesh.degree()
            # Interpolate function
            V = FunctionSpace(mesh, ("CG", degree))
            u = Function(V)
            cmap = fem.create_coordinate_map(mesh.ufl_domain())
            mesh.geometry.coord_mapping = cmap
            u.interpolate(e2)

            intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 40}))
            intu = MPI.sum(mesh.mpi_comm(), intu)

            nodes = [0, 9, 8, 3]
            ref = sympy_scipy(points, nodes, L, H)
            assert ref == pytest.approx(intu, rel=1e-6)
Beispiel #9
0
def test_third_order_quad(L, H, Z):
    """Test by comparing integration of z+x*y against sympy/scipy integration
    of a quad element. Z>0 implies curved element.

      *---------*   3--8--9--2-22-23-17
      |         |   |        |       |
      |         |   11 14 15 7 26 27 21
      |         |   |        |       |
      |         |   10 12 13 6 24 25 20
      |         |   |        |       |
      *---------*   0--4--5--1-18-19-16

    """
    points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z],        # 0  1 2 3
                       [L / 3, 0, 0], [2 * L / 3, 0, 0],                  # 4  5
                       [L, H / 3, 0], [L, 2 * H / 3, 0],                  # 6  7
                       [L / 3, H, Z], [2 * L / 3, H, Z],                  # 8  9
                       [0, H / 3, 0], [0, 2 * H / 3, 0],                  # 10 11
                       [L / 3, H / 3, 0], [2 * L / 3, H / 3, 0],          # 12 13
                       [L / 3, 2 * H / 3, 0], [2 * L / 3, 2 * H / 3, 0],  # 14 15
                       [2 * L, 0, 0], [2 * L, H, Z],                      # 16 17
                       [4 * L / 3, 0, 0], [5 * L / 3, 0, 0],              # 18 19
                       [2 * L, H / 3, 0], [2 * L, 2 * H / 3, 0],          # 20 21
                       [4 * L / 3, H, Z], [5 * L / 3, H, Z],              # 22 23
                       [4 * L / 3, H / 3, 0], [5 * L / 3, H / 3, 0],           # 24 25
                       [4 * L / 3, 2 * H / 3, 0], [5 * L / 3, 2 * H / 3, 0]])  # 26 27

    # Change to multiple cells when matthews dof-maps work for quads
    cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
                      [1, 16, 17, 2, 18, 19, 20, 21, 22, 23, 6, 7, 24, 25, 26, 27]])

    cells = permute_cell_ordering(cells, permutation_vtk_to_dolfin(CellType.quadrilateral, cells.shape[1]))
    mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells,
                [], GhostMode.none)

    def e2(x):
        return x[2] + x[0] * x[1]

    # Interpolate function
    V = FunctionSpace(mesh, ("CG", 3))
    u = Function(V)
    cmap = fem.create_coordinate_map(mesh.ufl_domain())

    mesh.geometry.coord_mapping = cmap

    u.interpolate(e2)

    intu = assemble_scalar(u * dx(mesh))
    intu = MPI.sum(mesh.mpi_comm(), intu)

    nodes = [0, 3, 10, 11]
    ref = sympy_scipy(points, nodes, 2 * L, H)
    assert ref == pytest.approx(intu, rel=1e-6)
Beispiel #10
0
def test_volume_quadrilateral_coplanarity_check_2(scaling):
    with pytest.raises(RuntimeError) as error:
        # Unit square cell scaled down by 'scaling' and the first vertex
        # is distorted so that the vertices are clearly non coplanar
        mesh = Mesh(
            MPI.comm_world, CellType.quadrilateral,
            numpy.array([[1.0, 0.5, 0.6], [0.0, scaling, 0.0],
                         [0.0, 0.0, scaling], [0.0, 1.0, 1.0]],
                        dtype=numpy.float64),
            numpy.array([[0, 1, 2, 3]], dtype=numpy.int32), [],
            cpp.mesh.GhostMode.none)
        mesh.create_connectivity_all()
        cpp.mesh.volume_entities(mesh, [0], mesh.topology.dim)

    assert "Not coplanar" in str(error.value)
Beispiel #11
0
def test_fourth_order_tri():
    L = 1
    #  *--*--*--*--*   3-21-20-19--2
    #  | \         |   | \         |
    #  *   *  * *  *   10 9 24 23  18
    #  |     \     |   |    \      |
    #  *  *   *  * *   11 15  8 22 17
    #  |       \   |   |       \   |
    #  *  * *   *  *   12 13 14 7  16
    #  |         \ |   |         \ |
    #  *--*--*--*--*   0--4--5--6--1
    for H in (1.0, 2.0):
        for Z in (0.0, 0.5):
            points = np.array(
                [[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z],   # 0, 1, 2, 3
                 [L / 4, 0, 0], [L / 2, 0, 0], [3 * L / 4, 0, 0],  # 4, 5, 6
                 [3 / 4 * L, H / 4, Z / 2], [L / 2, H / 2, 0],         # 7, 8
                 [L / 4, 3 * H / 4, 0], [0, 3 * H / 4, 0],         # 9, 10
                 [0, H / 2, 0], [0, H / 4, Z / 2],                     # 11, 12
                 [L / 4, H / 4, Z / 2], [L / 2, H / 4, Z / 2], [L / 4, H / 2, 0],  # 13, 14, 15
                 [L, H / 4, Z / 2], [L, H / 2, 0], [L, 3 * H / 4, 0],          # 16, 17, 18
                 [3 * L / 4, H, Z], [L / 2, H, Z], [L / 4, H, Z],          # 19, 20, 21
                 [3 * L / 4, H / 2, 0], [3 * L / 4, 3 * H / 4, 0],         # 22, 23
                 [L / 2, 3 * H / 4, 0]]                                    # 24
            )

            cells = np.array([[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
                              [1, 2, 3, 16, 17, 18, 19, 20, 21, 9, 8, 7, 22, 23, 24]])
            cells = permute_cell_ordering(cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1]))

            mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells,
                        [], GhostMode.none)

            def e2(x):
                return x[2] + x[0] * x[1]
            degree = mesh.degree()
            # Interpolate function
            V = FunctionSpace(mesh, ("CG", degree))
            u = Function(V)
            cmap = fem.create_coordinate_map(mesh.ufl_domain())
            mesh.geometry.coord_mapping = cmap
            u.interpolate(e2)

            intu = assemble_scalar(u * dx(metadata={"quadrature_degree": 50}))
            intu = MPI.sum(mesh.mpi_comm(), intu)
            nodes = [0, 3, 10, 11, 12]
            ref = sympy_scipy(points, nodes, L, H)
            assert ref == pytest.approx(intu, rel=1e-4)
Beispiel #12
0
def unit_cell(cell_type, random_order=True):
    if cell_type == CellType.interval:
        points = np.array([[0.], [1.]])
    if cell_type == CellType.triangle:
        # Define equilateral triangle with area 1
        root = 3**0.25  # 4th root of 3
        points = np.array([[0., 0.], [2 / root, 0.], [1 / root, root]])
    elif cell_type == CellType.tetrahedron:
        # Define regular tetrahedron with volume 1
        s = 2**0.5 * 3**(1 / 3)  # side length
        points = np.array([[0., 0., 0.], [s, 0., 0.],
                           [s / 2, s * np.sqrt(3) / 2, 0.],
                           [s / 2, s / 2 / np.sqrt(3), s * np.sqrt(2 / 3)]])
    elif cell_type == CellType.quadrilateral:
        # Define unit quadrilateral (area 1)
        points = np.array([[0., 0.], [1., 0.], [0., 1.], [1., 1.]])
    elif cell_type == CellType.hexahedron:
        # Define unit hexahedron (volume 1)
        points = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.],
                           [1., 1., 0.], [0., 0., 1.], [1., 0., 1.],
                           [0., 1., 1.], [1., 1., 1.]])
    num_points = len(points)

    # Randomly number the points and create the mesh
    order = list(range(num_points))
    if random_order:
        shuffle(order)
    ordered_points = np.zeros(points.shape)
    for i, j in enumerate(order):
        ordered_points[j] = points[i]
    cells = np.array([order])
    mesh = Mesh(MPI.COMM_WORLD, cell_type, ordered_points, cells, [])
    mesh.topology.create_connectivity_all()
    return mesh
def two_unit_cells(cell_type, agree=False, random_order=True, return_order=False):
    if cell_type == CellType.interval:
        points = np.array([[0.], [1.], [-1.]])
        if agree:
            cells = [[0, 1], [2, 0]]
        else:
            cells = [[0, 1], [0, 2]]
    if cell_type == CellType.triangle:
        # Define equilateral triangles with area 1
        root = 3 ** 0.25  # 4th root of 3
        points = np.array([[0., 0.], [2 / root, 0.],
                           [1 / root, root], [1 / root, -root]])
        if agree:
            cells = [[0, 1, 2], [0, 3, 1]]
        else:
            cells = [[0, 1, 2], [1, 0, 3]]
    elif cell_type == CellType.tetrahedron:
        # Define regular tetrahedra with volume 1
        s = 2 ** 0.5 * 3 ** (1 / 3)  # side length
        points = np.array([[0., 0., 0.], [s, 0., 0.],
                           [s / 2, s * np.sqrt(3) / 2, 0.],
                           [s / 2, s / 2 / np.sqrt(3), s * np.sqrt(2 / 3)],
                           [s / 2, s / 2 / np.sqrt(3), -s * np.sqrt(2 / 3)]])
        if agree:
            cells = [[0, 1, 2, 3], [0, 1, 4, 2]]
        else:
            cells = [[0, 1, 2, 3], [0, 2, 1, 4]]
    elif cell_type == CellType.quadrilateral:
        # Define unit quadrilaterals (area 1)
        points = np.array([[0., 0.], [1., 0.], [0., 1.], [1., 1.], [0., -1.], [1., -1.]])
        if agree:
            cells = [[0, 1, 2, 3], [4, 5, 0, 1]]
        else:
            cells = [[0, 1, 2, 3], [5, 1, 4, 0]]
    elif cell_type == CellType.hexahedron:
        # Define unit hexahedra (volume 1)
        points = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.],
                           [1., 1., 0.], [0., 0., 1.], [1., 0., 1.],
                           [0., 1., 1.], [1., 1., 1.], [0., 0., -1.],
                           [1., 0., -1.], [0., 1., -1.], [1., 1., -1.]])
        if agree:
            cells = [[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 0, 1, 2, 3]]
        else:
            cells = [[0, 1, 2, 3, 4, 5, 6, 7], [9, 11, 8, 10, 1, 3, 0, 2]]
    num_points = len(points)

    # Randomly number the points and create the mesh
    order = list(range(num_points))
    if random_order:
        shuffle(order)
    ordered_points = np.zeros(points.shape)
    for i, j in enumerate(order):
        ordered_points[j] = points[i]
    ordered_cells = np.array([[order[i] for i in c] for c in cells])
    mesh = Mesh(MPI.COMM_WORLD, cell_type, ordered_points, ordered_cells, [])
    mesh.topology.create_connectivity_all()
    if return_order:
        return mesh, order
    return mesh
Beispiel #14
0
def test_read_mesh_data(tempdir, tdim, n):
    filename = os.path.join(tempdir, "mesh.xdmf")
    mesh = mesh_factory(tdim, n)

    encoding = XDMFFile.Encoding.HDF5
    ghost_mode = cpp.mesh.GhostMode.none

    with XDMFFile(mesh.mpi_comm(), filename, encoding) as file:
        file.write(mesh)

    with XDMFFile(MPI.comm_world, filename) as file:
        cell_type, points, cells, indices = file.read_mesh_data(MPI.comm_world)

    mesh2 = Mesh(MPI.comm_world, cell_type, points, cells, indices, ghost_mode)

    assert (mesh.topology.cell_type == mesh2.topology.cell_type)
    assert mesh.num_entities_global(0) == mesh2.num_entities_global(0)
    dim = mesh.topology.dim
    assert mesh.num_entities_global(dim) == mesh2.num_entities_global(dim)
Beispiel #15
0
def test_second_order_quad(L, H, Z):
    """ Test by comparing integration of z+x*y against sympy/scipy
    integration of a quad element. Z>0 implies curved element.

      *-----*   3--6--2
      |     |   |     |
      |     |   7  8  5
      |     |   |     |
      *-----*   0--4--1

    """

    points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z],
                       [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z],
                       [0, H / 2, 0], [L / 2, H / 2, 0], [2 * L, 0, 0],
                       [2 * L, H, Z]])
    cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8]])
    cells = permute_cell_ordering(
        cells, permutation_vtk_to_dolfin(CellType.quadrilateral,
                                         cells.shape[1]))

    mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells, [],
                GhostMode.none)

    def e2(x):
        return x[2] + x[0] * x[1]

    # Interpolate function
    V = FunctionSpace(mesh, ("CG", 2))
    u = Function(V)
    cmap = fem.create_coordinate_map(mesh.ufl_domain())

    mesh.geometry.coord_mapping = cmap

    u.interpolate(e2)

    intu = assemble_scalar(u * dx(mesh))
    intu = MPI.sum(mesh.mpi_comm(), intu)

    nodes = [0, 3, 7]
    ref = sympy_scipy(points, nodes, L, H)
    assert ref == pytest.approx(intu, rel=1e-6)
Beispiel #16
0
def test_second_order_tri():
    # Test second order mesh by computing volume of two cells
    #  *-----*-----*   3----6-----2
    #  | \         |   | \        |
    #  |   \       |   |   \      |
    #  *     *     *   7     8    5
    #  |       \   |   |      \   |
    #  |         \ |   |        \ |
    #  *-----*-----*   0----4-----1
    for H in (1.0, 2.0):
        for Z in (0.0, 0.5):
            L = 1
            points = np.array([[0, 0, 0], [L, 0, 0], [L, H, Z], [0, H, Z],
                               [L / 2, 0, 0], [L, H / 2, 0], [L / 2, H, Z],
                               [0, H / 2, 0], [L / 2, H / 2, 0]])

            cells = np.array([[0, 1, 3, 4, 8, 7], [1, 2, 3, 5, 6, 8]])
            cells = permute_cell_ordering(
                cells,
                permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1]))
            mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [],
                        GhostMode.none)

            def e2(x):
                return x[2] + x[0] * x[1]

            degree = mesh.degree()
            # Interpolate function
            V = FunctionSpace(mesh, ("CG", degree))
            u = Function(V)
            cmap = fem.create_coordinate_map(mesh.ufl_domain())

            mesh.geometry.coord_mapping = cmap
            u.interpolate(e2)

            intu = assemble_scalar(
                u * dx(mesh, metadata={"quadrature_degree": 20}))
            intu = MPI.sum(mesh.mpi_comm(), intu)

            nodes = [0, 3, 7]
            ref = sympy_scipy(points, nodes, L, H)
            assert ref == pytest.approx(intu, rel=1e-6)
Beispiel #17
0
def test_higher_order_tetra_coordinate_map(order):
    """
    Computes physical coordinates of a cell, based on the coordinate map.
    """
    celltype = CellType.tetrahedron
    points = np.array([[0, 0, 0], [1, 0, 0], [0, 2, 0], [0, 0, 3],
                       [0, 4 / 3, 1], [0, 2 / 3, 2],
                       [2 / 3, 0, 1], [1 / 3, 0, 2],
                       [2 / 3, 2 / 3, 0], [1 / 3, 4 / 3, 0],
                       [0, 0, 1], [0, 0, 2],
                       [0, 2 / 3, 0], [0, 4 / 3, 0],
                       [1 / 3, 0, 0], [2 / 3, 0, 0],
                       [1 / 3, 2 / 3, 1], [0, 2 / 3, 1],
                       [1 / 3, 0, 1], [1 / 3, 2 / 3, 0]])

    if order == 1:
        points = np.array([points[0, :], points[1, :], points[2, :], points[3, :]])
    elif order == 2:
        points = np.array([points[0, :], points[1, :], points[2, :], points[3, :],
                           [0, 1, 3 / 2], [1 / 2, 0, 3 / 2], [1 / 2, 1, 0], [0, 0, 3 / 2],
                           [0, 1, 0], [1 / 2, 0, 0]])
    cells = np.array([range(len(points))])
    mesh = Mesh(MPI.COMM_WORLD, celltype, points, cells, [], degree=order)
    V = FunctionSpace(mesh, ("Lagrange", order))
    X = V.element.dof_reference_coordinates()
    coord_dofs = mesh.geometry.dofmap
    x_g = mesh.geometry.x

    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    x_coord_new = np.zeros([len(points), mesh.geometry.dim])

    i = 0
    for node in range(len(points)):
        x_coord_new[i] = x_g[coord_dofs.links(0)[node], :mesh.geometry.dim]
        i += 1

    x = np.zeros(X.shape)
    cmap.push_forward(x, X, x_coord_new)
    assert(np.allclose(x[:, 0], X[:, 0]))
    assert(np.allclose(x[:, 1], 2 * X[:, 1]))
    assert(np.allclose(x[:, 2], 3 * X[:, 2]))
Beispiel #18
0
def test_eval_manifold():
    # Simple two-triangle surface in 3d
    vertices = [(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0),
                (0.0, 1.0, 0.0)]
    cells = [(0, 1, 2), (0, 1, 3)]
    mesh = Mesh(MPI.COMM_WORLD, cpp.mesh.CellType.triangle,
                np.array(vertices, dtype=np.float64),
                np.array(cells, dtype=np.int32), [])

    Q = FunctionSpace(mesh, ("CG", 1))
    u = Function(Q)
    u.interpolate(lambda x: x[0] + x[1])
    assert np.isclose(u.eval([0.75, 0.25, 0.5], 0)[0], 1.0)
def test_manifold_point_search():
    # Simple two-triangle surface in 3d
    vertices = [(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0),
                (0.0, 1.0, 0.0)]
    cells = [(0, 1, 2), (0, 1, 3)]
    mesh = Mesh(MPI.COMM_WORLD, CellType.triangle,
                numpy.array(vertices, dtype=numpy.float64),
                numpy.array(cells, dtype=numpy.int32), [])

    bb = BoundingBoxTree(mesh, mesh.topology.dim)
    p = numpy.array([0.5, 0.25, 0.75])
    assert geometry.compute_first_entity_collision(bb, mesh, p) == 0

    p = numpy.array([0.25, 0.5, 0.75])
    assert geometry.compute_first_entity_collision(bb, mesh, p) == 1
def test_manifold_point_search():
    # Simple two-triangle surface in 3d
    vertices = [(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0),
                (0.0, 1.0, 0.0)]
    cells = [(0, 1, 2), (0, 1, 3)]
    mesh = Mesh(MPI.COMM_WORLD, CellType.triangle,
                numpy.array(vertices, dtype=numpy.float64),
                numpy.array(cells, dtype=numpy.int32), [])

    bb = BoundingBoxTree(mesh, mesh.topology.dim)
    p = numpy.array([0.5, 0.25, 0.75])
    cell_candidates = geometry.compute_collisions_point(bb, p)
    cell = cpp.geometry.select_colliding_cells(mesh, cell_candidates, p, 1)
    assert cell[0] == 0

    p = numpy.array([0.25, 0.5, 0.75])
    cell_candidates = geometry.compute_collisions_point(bb, p)
    cell = cpp.geometry.select_colliding_cells(mesh, cell_candidates, p, 1)
    assert cell[0] == 1
Beispiel #21
0
def test_triangle_dof_ordering(space_type):
    """Checks that dofs on shared triangle edges match up"""
    # Create a triangle mesh
    if MPI.COMM_WORLD.rank == 0:
        N = 6
        # Create a grid of points [0, 0.5, ..., 9.5]**2, then order them
        # in a random order
        temp_points = np.array([[x / 2, y / 2] for x in range(N)
                                for y in range(N)])
        order = [i for i, j in enumerate(temp_points)]
        shuffle(order)
        points = np.zeros(temp_points.shape)
        for i, j in enumerate(order):
            points[j] = temp_points[i]

        # Make triangle cells using the randomly ordered points
        cells = []
        for x in range(N - 1):
            for y in range(N - 1):
                a = N * y + x
                # Adds two triangle cells:
                # a+N -- a+N+1
                #  |   / |
                #  |  /  |
                #  | /   |
                #  a --- a+1
                for cell in [[a, a + 1, a + N + 1], [a, a + N + 1, a + N]]:
                    cells.append([order[i] for i in cell])

        # On process 0, input mesh data and distribute to other
        # processes
        mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, np.array(cells),
                    [])
    else:
        # On other processes, accept distributed data
        mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, np.ndarray((0, 2)),
                    np.ndarray((0, 3)), [])

    V = FunctionSpace(mesh, space_type)
    dofmap = V.dofmap

    edges = {}

    # Get coordinates of dofs and edges and check that they are the same
    # for each global dof number
    X = V.element.dof_reference_coordinates()
    coord_dofs = mesh.geometry.dofmap
    x_g = mesh.geometry.x
    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    for cell_n in range(coord_dofs.num_nodes):
        dofs = dofmap.cell_dofs(cell_n)

        x_coord_new = np.zeros([3, 2])
        for v in range(3):
            x_coord_new[v] = x_g[coord_dofs.links(cell_n)[v], :2]
        x = X.copy()
        cmap.push_forward(x, X, x_coord_new)

        edge_dofs_local = []
        for i in range(3):
            edge_dofs_local += list(dofmap.dof_layout.entity_dofs(1, i))
        edge_dofs = [dofs[i] for i in edge_dofs_local]
        for i, j in zip(edge_dofs, x[edge_dofs_local]):
            if i in edges:
                assert np.allclose(j, edges[i])
            else:
                edges[i] = j
Beispiel #22
0
def xtest_mesh_order_unchanged_quadrilateral():
    points = [[0, 0], [1, 0], [0, 1], [1, 1]]
    cells = [[0, 1, 2, 3]]
    mesh = Mesh(MPI.COMM_WORLD, CellType.quadrilateral, points, cells, [],
                cpp.mesh.GhostMode.none)
    assert (mesh.cells()[0] == cells[0]).all()
Beispiel #23
0
def xtest_mesh_order_unchanged_triangle():
    points = [[0, 0], [1, 0], [1, 1]]
    cells = [[0, 1, 2]]
    mesh = Mesh(MPI.COMM_WORLD, CellType.triangle, points, cells, [],
                cpp.mesh.GhostMode.none)
    assert (mesh.cells()[0] == cells[0]).all()
Beispiel #24
0
def test_mesh_construction_pygmsh():

    pygmsh = pytest.importorskip("pygmsh")

    if MPI.COMM_WORLD.rank == 0:
        geom = pygmsh.opencascade.Geometry()
        geom.add_ball([0.0, 0.0, 0.0], 1.0, char_length=0.2)
        pygmsh_mesh = pygmsh.generate_mesh(geom)
        points, cells = pygmsh_mesh.points, pygmsh_mesh.cells
    else:
        points = np.zeros([0, 3])
        cells = {
            "tetra": np.zeros([0, 4], dtype=np.int64),
            "triangle": np.zeros([0, 3], dtype=np.int64),
            "line": np.zeros([0, 2], dtype=np.int64)
        }

    mesh = Mesh(MPI.COMM_WORLD, dolfinx.cpp.mesh.CellType.tetrahedron, points,
                cells['tetra'], [], cpp.mesh.GhostMode.none)
    assert mesh.geometry.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 3

    mesh = Mesh(MPI.COMM_WORLD, dolfinx.cpp.mesh.CellType.triangle, points,
                cells['triangle'], [], cpp.mesh.GhostMode.none)
    assert mesh.geometry.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 2

    mesh = Mesh(MPI.COMM_WORLD, dolfinx.cpp.mesh.CellType.interval, points,
                cells['line'], [], cpp.mesh.GhostMode.none)
    assert mesh.geometry.degree() == 1
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 1

    if MPI.COMM_WORLD.rank == 0:
        print("Generate mesh")
        geom = pygmsh.opencascade.Geometry()
        geom.add_ball([0.0, 0.0, 0.0], 1.0, char_length=0.2)
        pygmsh_mesh = pygmsh.generate_mesh(
            geom, extra_gmsh_arguments=['-order', '2'])
        points, cells = pygmsh_mesh.points, pygmsh_mesh.cells
        print("End Generate mesh", cells.keys())
    else:
        points = np.zeros([0, 3])
        cells = {
            "tetra10": np.zeros([0, 10], dtype=np.int64),
            "triangle6": np.zeros([0, 6], dtype=np.int64),
            "line3": np.zeros([0, 3], dtype=np.int64)
        }

    mesh = Mesh(MPI.COMM_WORLD, dolfinx.cpp.mesh.CellType.tetrahedron, points,
                cells['tetra10'], [], cpp.mesh.GhostMode.none)
    assert mesh.geometry.degree() == 2
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 3

    mesh = Mesh(MPI.COMM_WORLD, dolfinx.cpp.mesh.CellType.triangle, points,
                cells['triangle6'], [], cpp.mesh.GhostMode.none)
    assert mesh.geometry.degree() == 2
    assert mesh.geometry.dim == 3
    assert mesh.topology.dim == 2
Beispiel #25
0
def test_nth_order_triangle(order):
    num_nodes = (order + 1) * (order + 2) / 2
    cells = np.array([range(int(num_nodes))])
    cells = permute_cell_ordering(
        cells, permutation_vtk_to_dolfin(CellType.triangle, cells.shape[1]))

    if order == 1:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000]])
    elif order == 2:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.50000, 0.00000, 0.00000],
                           [0.50000, 0.50000, -0.25000],
                           [0.00000, 0.50000, -0.25000]])

    elif order == 3:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.33333, 0.00000, 0.00000],
                           [0.66667, 0.00000, 0.00000],
                           [0.66667, 0.33333, -0.11111],
                           [0.33333, 0.66667, 0.11111],
                           [0.00000, 0.66667, 0.11111],
                           [0.00000, 0.33333, -0.11111],
                           [0.33333, 0.33333, -0.11111]])
    elif order == 4:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.25000, 0.00000, 0.00000],
                           [0.50000, 0.00000, 0.00000],
                           [0.75000, 0.00000, 0.00000],
                           [0.75000, 0.25000, -0.06250],
                           [0.50000, 0.50000, 0.06250],
                           [0.25000, 0.75000, -0.06250],
                           [0.00000, 0.75000, -0.06250],
                           [0.00000, 0.50000, 0.06250],
                           [0.00000, 0.25000, -0.06250],
                           [0.25000, 0.25000, -0.06250],
                           [0.50000, 0.25000, -0.06250],
                           [0.25000, 0.50000, 0.06250]])

    elif order == 5:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.20000, 0.00000, 0.00000],
                           [0.40000, 0.00000, 0.00000],
                           [0.60000, 0.00000, 0.00000],
                           [0.80000, 0.00000, 0.00000],
                           [0.80000, 0.20000, -0.04000],
                           [0.60000, 0.40000, 0.04000],
                           [0.40000, 0.60000, -0.04000],
                           [0.20000, 0.80000, 0.04000],
                           [0.00000, 0.80000, 0.04000],
                           [0.00000, 0.60000, -0.04000],
                           [0.00000, 0.40000, 0.04000],
                           [0.00000, 0.20000, -0.04000],
                           [0.20000, 0.20000, -0.04000],
                           [0.60000, 0.20000, -0.04000],
                           [0.20000, 0.60000, -0.04000],
                           [0.40000, 0.20000, -0.04000],
                           [0.40000, 0.40000, 0.04000],
                           [0.20000, 0.40000, 0.04000]])

    elif order == 6:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.16667, 0.00000, 0.00000],
                           [0.33333, 0.00000, 0.00000],
                           [0.50000, 0.00000, 0.00000],
                           [0.66667, 0.00000, 0.00000],
                           [0.83333, 0.00000, 0.00000],
                           [0.83333, 0.16667, -0.00463],
                           [0.66667, 0.33333, 0.00463],
                           [0.50000, 0.50000, -0.00463],
                           [0.33333, 0.66667, 0.00463],
                           [0.16667, 0.83333, -0.00463],
                           [0.00000, 0.83333, -0.00463],
                           [0.00000, 0.66667, 0.00463],
                           [0.00000, 0.50000, -0.00463],
                           [0.00000, 0.33333, 0.00463],
                           [0.00000, 0.16667, -0.00463],
                           [0.16667, 0.16667, -0.00463],
                           [0.66667, 0.16667, -0.00463],
                           [0.16667, 0.66667, 0.00463],
                           [0.33333, 0.16667, -0.00463],
                           [0.50000, 0.16667, -0.00463],
                           [0.50000, 0.33333, 0.00463],
                           [0.33333, 0.50000, -0.00463],
                           [0.16667, 0.50000, -0.00463],
                           [0.16667, 0.33333, 0.00463],
                           [0.33333, 0.33333, 0.00463]])
    elif order == 7:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.14286, 0.00000, 0.00000],
                           [0.28571, 0.00000, 0.00000],
                           [0.42857, 0.00000, 0.00000],
                           [0.57143, 0.00000, 0.00000],
                           [0.71429, 0.00000, 0.00000],
                           [0.85714, 0.00000, 0.00000],
                           [0.85714, 0.14286, -0.02041],
                           [0.71429, 0.28571, 0.02041],
                           [0.57143, 0.42857, -0.02041],
                           [0.42857, 0.57143, 0.02041],
                           [0.28571, 0.71429, -0.02041],
                           [0.14286, 0.85714, 0.02041],
                           [0.00000, 0.85714, 0.02041],
                           [0.00000, 0.71429, -0.02041],
                           [0.00000, 0.57143, 0.02041],
                           [0.00000, 0.42857, -0.02041],
                           [0.00000, 0.28571, 0.02041],
                           [0.00000, 0.14286, -0.02041],
                           [0.14286, 0.14286, -0.02041],
                           [0.71429, 0.14286, -0.02041],
                           [0.14286, 0.71429, -0.02041],
                           [0.28571, 0.14286, -0.02041],
                           [0.42857, 0.14286, -0.02041],
                           [0.57143, 0.14286, -0.02041],
                           [0.57143, 0.28571, 0.02041],
                           [0.42857, 0.42857, -0.02041],
                           [0.28571, 0.57143, 0.02041],
                           [0.14286, 0.57143, 0.02041],
                           [0.14286, 0.42857, -0.02041],
                           [0.14286, 0.28571, 0.02041],
                           [0.28571, 0.28571, 0.02041],
                           [0.42857, 0.28571, 0.02041],
                           [0.28571, 0.42857, -0.02041]])
    # Higher order tests are too slow
    elif order == 8:
        points = np.array([[0.00000, 0.00000, 0.00000],
                           [1.00000, 0.00000, 0.00000],
                           [0.00000, 1.00000, 0.00000],
                           [0.12500, 0.00000, 0.00000],
                           [0.25000, 0.00000, 0.00000],
                           [0.37500, 0.00000, 0.00000],
                           [0.50000, 0.00000, 0.00000],
                           [0.62500, 0.00000, 0.00000],
                           [0.75000, 0.00000, 0.00000],
                           [0.87500, 0.00000, 0.00000],
                           [0.87500, 0.12500, -0.00195],
                           [0.75000, 0.25000, 0.00195],
                           [0.62500, 0.37500, -0.00195],
                           [0.50000, 0.50000, 0.00195],
                           [0.37500, 0.62500, -0.00195],
                           [0.25000, 0.75000, 0.00195],
                           [0.12500, 0.87500, -0.00195],
                           [0.00000, 0.87500, -0.00195],
                           [0.00000, 0.75000, 0.00195],
                           [0.00000, 0.62500, -0.00195],
                           [0.00000, 0.50000, 0.00195],
                           [0.00000, 0.37500, -0.00195],
                           [0.00000, 0.25000, 0.00195],
                           [0.00000, 0.12500, -0.00195],
                           [0.12500, 0.12500, -0.00195],
                           [0.75000, 0.12500, -0.00195],
                           [0.12500, 0.75000, 0.00195],
                           [0.25000, 0.12500, -0.00195],
                           [0.37500, 0.12500, -0.00195],
                           [0.50000, 0.12500, -0.00195],
                           [0.62500, 0.12500, -0.00195],
                           [0.62500, 0.25000, 0.00195],
                           [0.50000, 0.37500, -0.00195],
                           [0.37500, 0.50000, 0.00195],
                           [0.25000, 0.62500, -0.00195],
                           [0.12500, 0.62500, -0.00195],
                           [0.12500, 0.50000, 0.00195],
                           [0.12500, 0.37500, -0.00195],
                           [0.12500, 0.25000, 0.00195],
                           [0.25000, 0.25000, 0.00195],
                           [0.50000, 0.25000, 0.00195],
                           [0.25000, 0.50000, 0.00195],
                           [0.37500, 0.25000, 0.00195],
                           [0.37500, 0.37500, -0.00195],
                           [0.25000, 0.37500, -0.00195]])

    mesh = Mesh(MPI.comm_world, CellType.triangle, points, cells, [],
                GhostMode.none)

    # Find nodes corresponding to y axis
    nodes = []
    for j in range(points.shape[0]):
        if np.isclose(points[j][0], 0):
            nodes.append(j)

    def e2(x):
        return x[2] + x[0] * x[1]

    # For solution to be in functionspace
    V = FunctionSpace(mesh, ("CG", max(2, order)))
    u = Function(V)
    cmap = fem.create_coordinate_map(mesh.ufl_domain())
    mesh.geometry.coord_mapping = cmap
    u.interpolate(e2)

    quad_order = 30
    intu = assemble_scalar(u * dx(metadata={"quadrature_degree": quad_order}))
    intu = MPI.sum(mesh.mpi_comm(), intu)

    ref = scipy_one_cell(points, nodes)
    assert ref == pytest.approx(intu, rel=3e-3)
Beispiel #26
0
def test_fourth_order_quad(L, H, Z):
    """Test by comparing integration of z+x*y against sympy/scipy integration
    of a quad element. Z>0 implies curved element.

      *---------*   20-21-22-23-24-41--42--43--44
      |         |   |           |              |
      |         |   15 16 17 18 19 37  38  39  40
      |         |   |           |              |
      |         |   10 11 12 13 14 33  34  35  36
      |         |   |           |              |
      |         |   5  6  7  8  9  29  30  31  32
      |         |   |           |              |
      *---------*   0--1--2--3--4--25--26--27--28

    """
    points = np.array([
        [0, 0, 0],
        [L / 4, 0, 0],
        [L / 2, 0, 0],  # 0 1 2
        [3 * L / 4, 0, 0],
        [L, 0, 0],  # 3 4
        [0, H / 4, -Z / 3],
        [L / 4, H / 4, -Z / 3],
        [L / 2, H / 4, -Z / 3],  # 5 6 7
        [3 * L / 4, H / 4, -Z / 3],
        [L, H / 4, -Z / 3],  # 8 9
        [0, H / 2, 0],
        [L / 4, H / 2, 0],
        [L / 2, H / 2, 0],  # 10 11 12
        [3 * L / 4, H / 2, 0],
        [L, H / 2, 0],  # 13 14
        [0, (3 / 4) * H, 0],
        [L / 4, (3 / 4) * H, 0],  # 15 16
        [L / 2, (3 / 4) * H, 0],
        [3 * L / 4, (3 / 4) * H, 0],  # 17 18
        [L, (3 / 4) * H, 0],
        [0, H, Z],
        [L / 4, H, Z],  # 19 20 21
        [L / 2, H, Z],
        [3 * L / 4, H, Z],
        [L, H, Z],  # 22 23 24
        [(5 / 4) * L, 0, 0],
        [(6 / 4) * L, 0, 0],  # 25 26
        [(7 / 4) * L, 0, 0],
        [2 * L, 0, 0],  # 27 28
        [(5 / 4) * L, H / 4, -Z / 3],
        [(6 / 4) * L, H / 4, -Z / 3],  # 29 30
        [(7 / 4) * L, H / 4, -Z / 3],
        [2 * L, H / 4, -Z / 3],  # 31 32
        [(5 / 4) * L, H / 2, 0],
        [(6 / 4) * L, H / 2, 0],  # 33 34
        [(7 / 4) * L, H / 2, 0],
        [2 * L, H / 2, 0],  # 35 36
        [(5 / 4) * L, 3 / 4 * H, 0],  # 37
        [(6 / 4) * L, 3 / 4 * H, 0],  # 38
        [(7 / 4) * L, 3 / 4 * H, 0],
        [2 * L, 3 / 4 * H, 0],  # 39 40
        [(5 / 4) * L, H, Z],
        [(6 / 4) * L, H, Z],  # 41 42
        [(7 / 4) * L, H, Z],
        [2 * L, H, Z]
    ])  # 43 44

    # VTK ordering
    cells = np.array([[
        0, 4, 24, 20, 1, 2, 3, 9, 14, 19, 21, 22, 23, 5, 10, 15, 6, 7, 8, 11,
        12, 13, 16, 17, 18
    ],
                      [
                          4, 28, 44, 24, 25, 26, 27, 32, 36, 40, 41, 42, 43, 9,
                          14, 19, 29, 30, 31, 33, 34, 35, 37, 38, 39
                      ]])

    cells = permute_cell_ordering(
        cells, permutation_vtk_to_dolfin(CellType.quadrilateral,
                                         cells.shape[1]))
    mesh = Mesh(MPI.comm_world, CellType.quadrilateral, points, cells, [],
                GhostMode.none)

    def e2(x):
        return x[2] + x[0] * x[1]

    V = FunctionSpace(mesh, ("CG", 4))
    u = Function(V)
    cmap = fem.create_coordinate_map(mesh.ufl_domain())

    mesh.geometry.coord_mapping = cmap

    u.interpolate(e2)

    intu = assemble_scalar(u * dx(mesh))
    intu = MPI.sum(mesh.mpi_comm(), intu)

    nodes = [0, 5, 10, 15, 20]
    ref = sympy_scipy(points, nodes, 2 * L, H)
    assert ref == pytest.approx(intu, rel=1e-5)
Beispiel #27
0
def test_mesh_order_unchanged_tetrahedron():
    points = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 0, 1]]
    cells = [[0, 1, 2, 3]]
    mesh = Mesh(MPI.comm_world, CellType.tetrahedron, points, cells, [],
                cpp.mesh.GhostMode.none)
    assert (mesh.cells()[0] == cells[0]).all()