def test_write_to_file(self):
        persons = MagicMock()
        households = MagicMock()
        population = Population(persons, households)

        population.write(persons_outfile='persons_file',
                         households_outfile='households_file')
        persons.to_csv.assert_called_once_with('persons_file')
        households.to_csv.assert_called_once_with('households_file')
 def test_read_from_file(self):
     read_csv = MagicMock(return_value=pandas.DataFrame())
     with patch('pandas.read_csv', read_csv):
         population = Population.from_csvs('persons_file',
                                           'households_file')
     assert type(population) == Population
     read_csv.assert_any_call('households_file')
     read_csv.assert_any_call('persons_file')
    def test_generate_households_simple(self):
        household_model = self._mock_model([inputs.NUM_PEOPLE.name],
                                           generated=[('6+', ), ('6+', )])
        allocations = self._mock_allocated()
        population = Population.generate(allocations, MagicMock(),
                                         household_model)

        evidence = ((inputs.NUM_PEOPLE.name, '6+'), )

        household_model.generate.assert_called_with('one_bucket',
                                                    evidence,
                                                    count=2)

        self.assertIn(inputs.NUM_PEOPLE.name, population.generated_households)
        self._check_household_output(population.generated_households)
    def test_generate_persons_simple(self):
        person_model = self._mock_model(
            [inputs.AGE.name, inputs.SEX.name],
            # Returns two people regardles of count passed in
            generated=[('35-64', 'F'), ('35-64', 'F')])
        allocations = self._mock_allocated()
        population = Population.generate(allocations, person_model,
                                         MagicMock())

        evidence = ((inputs.AGE.name, '35-64'), (inputs.SEX.name, 'M'))

        person_model.generate.assert_called_with('one_bucket',
                                                 evidence,
                                                 count=2)
        self._check_person_output(population.generated_people)
Beispiel #5
0
def generate_synthetic_people_and_households(state_id, puma_id, output_dir, allocator,
                                             person_model, household_model):
    '''Replace the PUMS Persons with Synthetic Persons created from the Bayesian Network.
       Writes out a combined person-household dataframe.

    Args:
        state_id: 2-digit state fips code
        puma_id: 5-digit puma code
        allocator: PUMS households as best as possible based on marginal census (currently tract)
            data using a cvx-solver.
        person_model: bayesian model describing the discritized pums fields' relation to one another
        household_model: same as person_model but for households
    '''
    population = Population.generate(
                household_allocator=allocator,
                person_model=person_model,
                household_model=household_model
            )
    population.write(
                os.path.join(output_dir, FILE_PATTERN.format(state_id, puma_id, 'people.csv')),
                os.path.join(output_dir, FILE_PATTERN.format(state_id, puma_id, 'households.csv'))
            )