def test_make_plr_turrell2018_return_types():
    np.random.seed(3141)
    res = make_plr_turrell2018(n_obs=100, return_type='DoubleMLData')
    assert isinstance(res, DoubleMLData)
    res = make_plr_turrell2018(n_obs=100, return_type='DataFrame')
    assert isinstance(res, pd.DataFrame)
    x, y, d = make_plr_turrell2018(n_obs=100, return_type='array')
    assert isinstance(x, np.ndarray)
    assert isinstance(y, np.ndarray)
    assert isinstance(d, np.ndarray)
    with pytest.raises(ValueError, match=msg_inv_return_type):
        _ = make_plr_turrell2018(n_obs=100, return_type='matrix')
Beispiel #2
0
def generate_data2(request):
    n_p = request.param
    np.random.seed(1111)
    # setting parameters
    n = n_p[0]
    p = n_p[1]
    theta = 0.5

    # generating data
    data = make_plr_turrell2018(n, p, theta)

    return data
Beispiel #3
0
def generate_data2(request):
    N_p = request.param
    np.random.seed(1111)
    # setting parameters
    N = N_p[0]
    p = N_p[1]
    theta = 0.5

    # generating data
    datasets = []
    for i in range(n_datasets):
        data = make_plr_turrell2018(N, p, theta)
        datasets.append(data)

    return datasets