def create_task(): df = clean_df(request.json) df_customer = df >> mutate(name=X.FullNameBilling.str.upper()) >> group_by( X.name) >> summarize(contact=X.PhoneBilling.head(1), email=X.EmailBilling.head(1), address=X.Address2Billing.head(1), num_items_purchased=(X.name).count()) jsondf = df_customer.to_json(orient='records') return (jsondf)
def create_task2(): df = clean_df(request.json) print(df["Category"]) df['supplier'] = df['Category'].apply(lambda x: supp(x)) df = DplyFrame(df) >> group_by(X.supplier) >> summarize(max1 = most_common( X.Name ) ) print(df) # df_fav = df >> mutate(new = supp(X.Category)) jsondf = df.to_json(orient='records') return (jsondf);
def create_task2(): df = clean_df(request.json) print(df["Category"]) df['supplier'] = df['Category'].apply(lambda x: supp(x)) df = DplyFrame(df) >> group_by( X.supplier) >> summarize(max1=most_common(X.Name)) print(df) # df_fav = df >> mutate(new = supp(X.Category)) jsondf = df.to_json(orient='records') return (jsondf)
def create_task(): df = clean_df(request.json) df_customer = df >> mutate(name=X.FullNameBilling.str.upper()) >> group_by(X.name) >> summarize(contact = X.PhoneBilling.head(1), email = X.EmailBilling.head(1), address = X.Address2Billing.head(1), num_items_purchased = (X.name).count() ) jsondf = df_customer.to_json(orient='records') return (jsondf);
# data=iris %>% # select(Petal.Length, Petal.Width, Sepal.Length, Sepal.Width, Species) iris >> dp.select(X.Species) >> dp.head() iris[['Species', 'PetalLength']] iris.drop('SepalLength', axis=1) #quitar esa columna iris.drop(5, axis=0) #quitar la sexta fila # data=iris %>% # filter(Petal.Length>1 & Petal.Length<100) iris >> dp.sift(X.PetalLength>5) iris[(iris['PetalLength']>5) & (iris['PetalLength']<6)] # data=iris %>% # dplyr::group_by(Species) %>% # summarise(media=mean(Petal.Length)) iris >> dp.group_by(X.Species) >> dp.summarize(media=X.PetalLength.mean()) iris.groupby(['Species'])['PetalLength'].agg(['mean', 'sum', 'count']) iris.groupby(['Species'])['PetalLength'].agg({'var1':'mean', 'var2':'sum', 'var3':'count'}) iris.groupby(['Species'])['PetalLength'].agg({'var1':['mean', 'sum']}) aggregations = { 'dsuma':'sum', } import math iris.groupby(['Species'])['PetalLength'].agg({'dsuma':'sum', 'otro': lambda x: math.sqrt(x.mean()) - 1}) # data=iris %>% # mutate(total=Sepal.Length+Petal.Length, otro=ifelse(Petal.Length>2, "grande", "pequeño")) iris >> dp.mutate(redondeado=X.PetalLength.round(), redondeado2=X.SepalLength.round()) iris.assign(redondeado = lambda x: x.PetalLength.round(), redondeado2 = lambda x: x.SepalLength.round())
# bind_rows(other, join='outer', ignore_index=False) # pandas.concat([df, other], join=join, ignore_index=ignore_index, axis=0) a >> bind_rows(b, join='inner') a >> bind_rows(b, join='outer') # bind_cols() - joining DataFrames "horizontally" # bind_cols(other, join='outer', ignore_index=False) # pandas.concat([df, other], join=join, ignore_index=ignore_index, axis=1) a >> bind_cols(b) # Summarization # summarize(**kwargs) takes an arbitrary number of keyword arguments that will # return new columns labeled with the keys that are summary functions of columns # in the original DataFrame. diamonds >> summarize(price_mean=X.price.mean(), price_std=X.price.std()) diamonds >> group_by('cut') >> summarize(price_mean=X.price.mean(), price_std=X.price.std()) # summarize_each(function_list, *columns) is a more general summarization function. # It takes a list of summary functions to apply as its first argument and then a # list of columns to apply the summary functions to. Columns can be specified with # either symbolic, string label, or integer position like in the selection functions # for convenience. diamonds >> summarize_each([np.mean, np.var], X.price, 'depth') diamonds >> group_by(X.cut) >> summarize_each([np.mean, np.var], X.price, 4) # Summary functions # mean(series) diamonds >> groupby(X.cut) >> summarize(price_mean=mean(X.price)) # first(series, order_by=None) diamonds >> groupby(X.cut) >> summarize(price_first=first(X.price))
"""to filter the bigrams only""" bigr = output[output['word'].str.contains("_")] """FROM THIS PART, 2 STRATEGIES, SAVE THE OUTPUT AND CONTINUE W R OR GO AHEAD W PYTHON""" """5 plotting""" """5 1 aggregating for plotting""" from dplython import (DplyFrame, X, diamonds, select, sift, sample_n, sample_frac, head, arrange, mutate, group_by, summarize, DelayFunction) dfr = DplyFrame(output) dfr = (dfr >> group_by(X.word, X.source) >> summarize(tot=X.count.sum())) dff = (dfr >>select(X.word, X.tot )) """5.2 wordcloud""" """turns the word freq to dict""" d = {} for a, x in dff.values: d[a] = x wordcloud = WordCloud(width = 1000, height = 1000, background_color ='white', min_font_size =15, max_font_size=120).generate_from_frequencies(frequencies=d) plt.figure(figsize = (8, 8), facecolor = None) plt.imshow(wordcloud) plt.axis("off") plt.tight_layout(pad = 0) plt.show()
def czMatchmaker(data, Q, precursor_fasta): data = pd.read_csv( "/Users/matteo/Documents/czMatchmaker/data/examplaryData.csv") data = DplyFrame(data) precursors = data >> \ sift( X.tag == 'precursor' ) >> \ select( X.active, X.neutral, X.estimates) fragments = data >> sift( X.tag != 'precursor' ) >> \ group_by( X.tag, X.active, X.broken_bond ) >> \ summarize( estimates = X.estimates.sum() ) I_on_fragments = {} optiminfos = {} for break_point, data in fragments.groupby('broken_bond'): pairing, optiminfo = collect_fragments(data, Q) I_on_fragments[break_point] = pairing optiminfos[break_point] = optiminfo cations_fragmented_I = sum( sum(I_on_fragments[bP][p] for p in I_on_fragments[bP]) for bP in I_on_fragments) I_no_reactions = precursors >> \ sift( X.active==Q, X.neutral == 0) >> \ select( X.estimates ) I_no_reactions = I_no_reactions.values.flatten()[0] prec_ETnoD_PTR_I = precursors >> \ sift( X.active != Q ) >> \ rename( ETnoD = X.neutral, I = X.estimates ) >> \ mutate( PTR = Q - X.ETnoD - X.active ) >> \ select( X.ETnoD, X.PTR, X.I ) I_prec_no_frag = prec_ETnoD_PTR_I >> \ summarize( I = X.I.sum() ) I_prec_no_frag = I_prec_no_frag.values.flatten()[0] precursorNoReactions = precursors >> \ sift( X.active == Q ) >> \ select( X.estimates ) prec_ETnoD_PTR_I = prec_ETnoD_PTR_I >> mutate( I_PTR = crossprod(X.PTR, X.I), \ I_ETnoD = crossprod(X.ETnoD, X.I) ) >> \ summarize( I_PTR = X.I_PTR.sum(), I_ETnoD = X.I_ETnoD.sum() ) I_PTR_no_frag, I_ETnoD_no_frag = prec_ETnoD_PTR_I.values.flatten() prob_PTR = I_PTR_no_frag / (I_PTR_no_frag + I_ETnoD_no_frag) prob_ETnoD = 1. - prob_PTR I_frags = dict( (bP, sum(I_on_fragments[bP][pairing] for pairing in I_on_fragments[bP])) for bP in I_on_fragments) I_frag_total = sum(I_frags[bP] for bP in I_frags) prob_frag = Counter( dict((int(bP), I_frags[bP] / I_frag_total) for bP in I_frags)) prob_frag = [prob_frag[i] for i in range(len(precursor_fasta))] I_frags_PTRETnoD_total = sum( (Q - 1 - sum(q for cz, q in pairing)) * I_on_fragments[bP][pairing] for bP in I_on_fragments for pairing in I_on_fragments[bP]) anion_meets_cation = I_frags_PTRETnoD_total + I_PTR_no_frag + I_ETnoD_no_frag prob_fragmentation = I_frags_PTRETnoD_total / anion_meets_cation prob_no_fragmentation = 1 - prob_fragmentation prob_no_reaction = I_no_reactions / (I_no_reactions + I_frag_total + I_prec_no_frag) prob_reaction = 1. - prob_no_reaction res = {} res['reaction'] = (prob_reaction, prob_no_reaction) res['fragmentation'] = (prob_fragmentation, prob_no_fragmentation) res['fragmentation_amino_acids'] = tuple(prob_frag) return res
firsts = pd.read_csv( 'https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-06-09/firsts.csv' ) firsts.to_csv('/Users/vivekparashar/Downloads/firsts.csv') # Create/Convert a pandas dataframe to dplython df firsts = DplyFrame(firsts) firsts.columns firsts.gender.unique() firsts.category.unique() # firsts df summary by category t1 = (firsts >> mutate(year_grp=((X.year / 10).round()) * 10) >> group_by( X.year_grp, X.category) >> summarize(nrows=X.accomplishment.count())) c1 = alt.Chart(t1).mark_circle().encode(x='year_grp:O', y='category:O', size='nrows:Q') c3 = alt.Chart(t1).mark_bar().encode(x='year_grp', y='nrows', color='category') # firsts df summary by gender t2 = (firsts >> mutate(year_grp=((X.year / 10).round()) * 10) >> group_by( X.year_grp, X.gender) >> summarize(nrows=X.accomplishment.count())) c2 = alt.Chart(t2).mark_circle().encode(x='year_grp:O', y='gender:O', size='nrows:Q') chart = alt.vconcat(c2, c1, c3) chart.save( '/Users/vivekparashar/OneDrive/OneDrive-GitHub/Challenges-and-Competitions/TidyTuesday/Data/2020-11-17/chart.png',
import pandas from dplython import (DplyFrame, X, diamonds, select, sift, sample_n, sample_frac, head, arrange, mutate, group_by, summarize, DelayFunction) diamonds >> head(5) diamonds >> select(X.carat, X.cut, X.price) >> head(5) d = (diamonds >> sift(X.carat > 4) >> select(X.carat, X.cut, X.depth, X.price) >> head(2)) (diamonds >> mutate(carat_bin=X.carat.round()) >> group_by(X.cut, X.carat_bin) >> summarize(avg_price=X.price.mean())) test = df['deaths'] < 0 less_than_zero = df[test] print(less_than_zero.shape) print(less_than_zero.head()) test #df['deaths_fixed'] = df['deaths_new'].apply(lambda x: 'True' if x <= 0 else 'False')
def load_data(input_dir, crsrd_id): cctv_log = pd.read_csv(input_dir + "/ORT_CCTV_5MIN_LOG.csv") cctv_mst = pd.read_csv(input_dir + "/ORT_CCTV_MST.csv") cctv_log['DATE'] = pd.DataFrame(pd.DatetimeIndex(cctv_log['REG_DT']).date) cctv_log['HOUR'] = pd.DataFrame(pd.DatetimeIndex(cctv_log['REG_DT']).hour) cctv_log['MINUTE'] = ( pd.DataFrame(pd.DatetimeIndex(cctv_log['REG_DT']).minute) // 30) * 30 cctv_log['temp_DAY'] = pd.to_datetime(cctv_log['DATE']).dt.dayofweek cctv_log.loc[cctv_log['temp_DAY'] < 5, 'DAY'] = int(0) #mon - fri cctv_log.loc[cctv_log['temp_DAY'] == 5, 'DAY'] = int(1) #sat cctv_log.loc[cctv_log['temp_DAY'] == 6, 'DAY'] = int(2) #sun df0 = DplyFrame(cctv_log) >> group_by( X.DATE, X.DAY, X.HOUR, X.MINUTE, X.CCTV_ID) >> summarize( GO_TRF=X.GO_BIKE.sum() + X.GO_CAR.sum() + X.GO_SUV.sum() + X.GO_VAN.sum() + X.GO_TRUCK.sum() + X.GO_BUS.sum() + X.RIGHT_BIKE.sum() + X.RIGHT_CAR.sum() + X.RIGHT_SUV.sum() + X.RIGHT_VAN.sum() + X.RIGHT_TRUCK.sum() + X.RIGHT_BUS.sum(), LEFT_TRF=X.LEFT_BIKE.sum() + X.LEFT_CAR.sum() + X.LEFT_SUV.sum() + X.LEFT_VAN.sum() + X.LEFT_TRUCK.sum() + X.LEFT_BUS.sum()) # Extract records of selected crossroad cctv_mst = DplyFrame(cctv_mst) >> sift(X.CRSRD_ID == crsrd_id) >> select( X.CRSRD_ID, X.CCTV_ID) df0 = pd.merge(df0, cctv_mst, how="inner", on="CCTV_ID") df0 = df0.sort_values(['DATE', 'HOUR', 'MINUTE', 'CCTV_ID']) # Time frame from existing dataset tf = DplyFrame( df0.drop_duplicates( ['DATE', 'DAY', 'HOUR', 'MINUTE'], keep='last')) >> select( X.DATE, X.DAY, X.HOUR, X.MINUTE) # Process the datastructure into pivot cctv_list = sorted(cctv_mst['CCTV_ID'].unique()) df1 = tf for cctv in cctv_list: a = df0 >> sift(X.CCTV_ID == cctv) >> select( X.DATE, X.DAY, X.HOUR, X.MINUTE, X.GO_TRF, X.LEFT_TRF) df1 = pd.merge(df1, a, how='left', on=['DATE', 'DAY', 'HOUR', 'MINUTE'], suffixes=('', '_' + str(cctv))) df1 = df1.set_index(['DATE', 'DAY', 'HOUR', 'MINUTE']) df1 = df1.fillna(df1.rolling(window=24, min_periods=1, center=True).mean()) df1 = df1.fillna(0) df1 = df1.reset_index() df1['TOTAL_TRF'] = DplyFrame(df1.iloc[:, 4:3 + len(cctv_list) * 2].sum( axis=1, skipna=True)) df1 = df1 >> sift(X.TOTAL_TRF > 0) print(df1) # Name the cctv id and direction - for tod_traffic_analyzer cols = [cctv + '_GO_RATE' for cctv in cctv_list] cols.extend([cctv + '_LEFT_RATE' for cctv in cctv_list]) cols = sorted(cols) cols = ['TOD'] + cols + ['TOTAL_TRF'] return df1, cols