Beispiel #1
0
def black_scholes(price, strike, t, rate, vol, call, put):
    mr = -rate
    sig_sig_two = vol * vol * 2

    P = price
    S = strike
    T = t

    a = np.log(P / S)
    b = T * mr

    z = T * sig_sig_two
    c = 0.25 * z
    y = 1./np.sqrt(z)

    w1 = (a - b + c) * y
    w2 = (a - b - c) * y

    d1 = 0.5 + 0.5 * np.erf(w1)
    d2 = 0.5 + 0.5 * np.erf(w2)

    Se = np.exp(b) * S

    r =  P * d1 - Se * d2
    call[:] = r  # temporary `r` is necessary for faster `put` computation
    put[:] = r - P + Se
Beispiel #2
0
def test_erf_fallback():
    a = numpy.linspace(2.0, 3.0, num=10)

    expected = numpy.empty_like(a)
    for idx, val in enumerate(a):
        expected[idx] = math.erf(val)

    result = dpnp.erf(a)

    numpy.testing.assert_array_equal(result, expected)
Beispiel #3
0
def test_strides_erf(dtype, shape):
    a = numpy.arange(numpy.prod(shape), dtype=dtype).reshape(shape)
    b = a[::2]

    dpa = dpnp.reshape(dpnp.arange(numpy.prod(shape), dtype=dtype), shape)
    dpb = dpa[::2]

    result = dpnp.erf(dpb)

    expected = numpy.empty_like(b)
    for idx, val in enumerate(b):
        expected[idx] = math.erf(val)

    numpy.testing.assert_allclose(result, expected)
Beispiel #4
0
def black_scholes(price, strike, t, mrs, vol_vol_twos, quarters, ones, halfs,
                  call, put):
    P = price
    S = strike
    T = t

    a = np.log(P / S)
    b = T * mrs

    z = T * vol_vol_twos
    c = quarters * z
    y = ones / np.sqrt(z)

    w1 = (a - b + c) * y
    w2 = (a - b - c) * y

    d1 = halfs + halfs * np.erf(w1)
    d2 = halfs + halfs * np.erf(w2)

    Se = np.exp(b) * S

    r = P * d1 - Se * d2
    call[:] = r  # temporary `r` is necessary for faster `put` computation
    put[:] = r - P + Se