def test_quat(self): euler1 = np.random.rand(3) * 2.0 * np.pi - np.pi euler2 = np.random.rand(3) * 2.0 * np.pi - np.pi q1 = tf.quaternion_from_euler(*euler1) q2 = tf.quaternion_from_euler(*euler2) q1q2_0 = tf.quaternion_multiply(q1, q2) q1q2_1 = (quat(*q1) * quat(*q2)).data self.assertTrue(np.allclose(q1q2_0, q1q2_1))
def dualquat_from_twist(tw): ang = np.linalg.norm(tw[:3]) if ang < np.finfo(np.float32).eps: return dualquat(quat.identity(), tw[3:]) return dualquat(quat(ang, tw[:3] / ang), tw[3:])
import copy import numpy as np import open3d as o3 from probreg import filterreg from probreg import callbacks from probreg import transformation from dq3d import dualquat, quat n_points = 30 points = np.array([[i * 0.05, 0.0, 0.0] for i in range(n_points)]) tfs = [(quat(np.deg2rad(0.0), np.array([0.0, 0.0, 1.0])), np.array([0.0, 0.0, 0.0])), (quat(np.deg2rad(30.0), np.array([0.0, 0.0, 1.0])), np.array([0.0, 0.0, 0.3]))] dqs = [dualquat(t[0], t[1]) for t in tfs] ws = transformation.DeformableKinematicModel.SkinningWeight(n_points) for i in range(n_points): ws['pair'][i][0] = 0 ws['pair'][i][1] = 1 for i in range(n_points): ws['val'][i][0] = float(i) / n_points ws['val'][i][1] = 1.0 - float(i) / n_points dtf = transformation.DeformableKinematicModel(dqs, ws) tf_points = dtf.transform(points) source = o3.geometry.PointCloud() source.points = o3.utility.Vector3dVector(points) target = o3.geometry.PointCloud() target.points = o3.utility.Vector3dVector(tf_points) cbs = [callbacks.Open3dVisualizerCallback(source, target)] cv = lambda x: np.asarray(x.points if isinstance(x, o3.geometry.PointCloud) else x) reg = filterreg.DeformableKinematicFilterReg(cv(source), ws, 0.01)
def transform_to_screw(translation, quat_in_wxyz, tol=1e-6): dq = dq3d.dualquat(dq3d.quat(quat_as_xyzw(quat_in_wxyz)), translation) screw = dual_quaternion_to_screw(dq, tol) return screw
import numpy as np import transformations as tf from dq3d import quat, dualquat from dq3d import op import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation fig = plt.figure() ax = fig.add_subplot(111, projection='3d') mids = [] euler1 = np.random.rand(3) * 2.0 * np.pi - np.pi euler2 = np.random.rand(3) * 2.0 * np.pi - np.pi dq1 = dualquat(quat(*tf.quaternion_from_euler(*euler1)), np.random.rand(3)) dq2 = dualquat(quat(*tf.quaternion_from_euler(*euler2)), np.random.rand(3)) def update_anim(i): plt.cla() t = i * 0.01 mid = op.sclerp(dq1, dq2, t) pts = np.array([dq1.translation(), dq2.translation()]) mids.append(mid.translation()) mids_arr = np.array(mids) ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2]) ax.scatter(mids_arr[:, 0], mids_arr[:, 1], mids_arr[:, 2]) ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_zlim(0, 1)