def process_sas_data(datalist, conf, **kwargs):
    """
    This function combines Steps 1 through 9 of the data reduction process for
    Small-Angle Scattering section 2.5.1 as specified by the documents at
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly. This function should really only be used in
    the context of I{sas_reduction}.

    @param datalist: A list containing the filenames of the data to be
    processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
                            information.
    @type inst_geom_dst: C{DST.GeomDST}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword trans_data: Alternate data for the transmission spectrum. This is
                         used in the absence of transmission monitors.
    @type trans_data: C{string}

    @keyword transmission: A flag that signals the function to stop after
                           doing the conversion from TOF to wavelength. The
                           default is I{False}.
    @type transmission: C{boolean}

    @keyword bkg_subtract: A list of coefficients that help determine the
                           wavelength dependent background subtraction.
    @type bkg_subtract: C{list}

    @keyword get_background: A flag that signals the function to convert the
                             main data to wavelength and exit before
                             normalizing to the beam monitor.
    @type get_background: C{boolean}

    @keyword acc_down_time: The information for the accelerator downtime.
    @type acc_down_time: C{tuple}

    @keyword bkg_scale: The scaling used for the axis dependent background
                        parameters.
    @type bkg_scale: C{float}

    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        transmission = kwargs["transmission"]
    except KeyError:
        transmission = False

    try:
        bkg_subtract = kwargs["bkg_subtract"]
    except KeyError:
        bkg_subtract = None

    try:
        trans_data = kwargs["trans_data"]
    except KeyError:
        trans_data = None

    try:
        get_background = kwargs["get_background"]
    except KeyError:
        get_background = False

    acc_down_time = kwargs.get("acc_down_time")
    bkg_scale = kwargs.get("bkg_scale")

    # Add so_axis to Configure object
    conf.so_axis = "time_of_flight"

    # Step 0: Open appropriate data files

    # Data
    if conf.verbose:
        print "Reading %s file" % dataset_type

    # The [0] is to get the data SOM and ignore the None background SOM
    dp_som = dr_lib.add_files(datalist, Data_Paths=conf.data_paths.toPath(),
                              SO_Axis=conf.so_axis, Signal_ROI=conf.roi_file,
                              dataset_type=dataset_type,
                              Verbose=conf.verbose, Timer=t)
    
    if t is not None:
        t.getTime(msg="After reading %s " % dataset_type)

    dp_som1 = dr_lib.fix_bin_contents(dp_som)

    del dp_som

    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(conf.data_paths.toPath(), dp_som1)

    if conf.dump_tof_r:
        dp_som1_1 = dr_lib.create_param_vs_Y(dp_som1, "radius", "param_array",
                                             conf.r_bins.toNessiList(),
                                             y_label="counts",
                                             y_units="counts / (usec * m)",
                                             x_labels=["Radius", "TOF"], 
                                             x_units=["m", "usec"])

        hlr_utils.write_file(conf.output, "text/Dave2d", dp_som1_1,
                             output_ext="tvr",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="TOF vs radius information")

        del dp_som1_1

    if conf.dump_tof_theta:
        dp_som1_1 = dr_lib.create_param_vs_Y(dp_som1, "polar", "param_array",
                                             conf.theta_bins.toNessiList(),
                                             y_label="counts",
                                             y_units="counts / (usec * rads)",
                                             x_labels=["Polar Angle", "TOF"], 
                                             x_units=["rads", "usec"])

        hlr_utils.write_file(conf.output, "text/Dave2d", dp_som1_1,
                             output_ext="tvt",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="TOF vs polar angle information")        

        del dp_som1_1
        
    # Beam monitor
    if not get_background:
        if conf.beammon_over is None:
            if conf.verbose:
                print "Reading in beam monitor data from %s file" \
                      % dataset_type

                # The [0] is to get the data SOM and ignore the None
                # background SOM
                dbm_som0 = dr_lib.add_files(datalist,
                                            Data_Paths=conf.bmon_path.toPath(),
                                            SO_Axis=conf.so_axis,
                                            dataset_type=dataset_type,
                                            Verbose=conf.verbose,
                                            Timer=t)
            
                if t is not None:
                    t.getTime(msg="After reading beam monitor data ")

                if conf.inst_geom is not None:
                    i_geom_dst.setGeometry(conf.bmon_path.toPath(), dbm_som0)
        else:
            if conf.verbose:
                print "Reading in vanadium data"

                dbm_som0 = dr_lib.add_files(datalist,
                                          Data_Paths=conf.data_paths.toPath(),
                                            Signal_ROI=conf.roi_file,
                                            SO_Axis=conf.so_axis,
                                            dataset_type=dataset_type,
                                            Verbose=conf.verbose,
                                            Timer=t)
                if t is not None:
                    t.getTime(msg="After reading vanadium data ")

                if conf.inst_geom is not None:
                    i_geom_dst.setGeometry(conf.data_paths.toPath(), dbm_som0)


        dbm_som1 = dr_lib.fix_bin_contents(dbm_som0)
        
        del dbm_som0
    else:
        dbm_som1 = None

    # Transmission monitor
    if trans_data is None:
        if conf.verbose:
            print "Reading in transmission monitor data from %s file" \
                  % dataset_type
        try:
            dtm_som0 = dr_lib.add_files(datalist,
                                        Data_Paths=conf.tmon_path.toPath(),
                                        SO_Axis=conf.so_axis,
                                        dataset_type=dataset_type,
                                        Verbose=conf.verbose,
                                        Timer=t)
            if t is not None:
                t.getTime(msg="After reading transmission monitor data ")

                if conf.inst_geom is not None:
                    i_geom_dst.setGeometry(conf.tmon_path.toPath(), dtm_som0)
                    
            dtm_som1 = dr_lib.fix_bin_contents(dtm_som0)
                
            del dtm_som0
        # Transmission monitor cannot be found
        except KeyError:
            if conf.verbose:
                print "Transmission monitor not found"
            dtm_som1 = None
    else:
        dtm_som1 = None

    # Note: time_zero_offset_det MUST be a tuple
    if conf.time_zero_offset_det is not None:
        dp_som1.attr_list["Time_zero_offset_det"] = \
                                     conf.time_zero_offset_det.toValErrTuple()
    # Note: time_zero_offset_mon MUST be a tuple
    if conf.time_zero_offset_mon is not None and not get_background and \
           conf.beammon_over is None:
        dbm_som1.attr_list["Time_zero_offset_mon"] = \
                                     conf.time_zero_offset_mon.toValErrTuple()
    if conf.beammon_over is not None:
        dbm_som1.attr_list["Time_zero_offset_det"] = \
                                     conf.time_zero_offset_det.toValErrTuple()
    if trans_data is None and dtm_som1 is not None:
        dtm_som1.attr_list["Time_zero_offset_mon"] = \
                                     conf.time_zero_offset_mon.toValErrTuple()

    # Step 1: Convert TOF to wavelength for data and monitor
    if conf.verbose:
        print "Converting TOF to wavelength"

    if t is not None:
        t.getTime(False)

    if not get_background:
        # Convert beam monitor
        if conf.beammon_over is None:
            dbm_som2 = common_lib.tof_to_wavelength_lin_time_zero(
                dbm_som1,
                units="microsecond",
                time_zero_offset=conf.time_zero_offset_mon.toValErrTuple())
        else:
            dbm_som2 = common_lib.tof_to_wavelength_lin_time_zero(
                dbm_som1,
                units="microsecond",
                time_zero_offset=conf.time_zero_offset_det.toValErrTuple(),
                inst_param="total")
    else:
        dbm_som2 = None

    # Convert detector pixels
    dp_som2 = common_lib.tof_to_wavelength_lin_time_zero(
        dp_som1,
        units="microsecond",
        time_zero_offset=conf.time_zero_offset_det.toValErrTuple(),
        inst_param="total")

    if get_background:
        return dp_som2

    if dtm_som1 is not None:
        # Convert transmission  monitor
        dtm_som2 = common_lib.tof_to_wavelength_lin_time_zero(
            dtm_som1,
            units="microsecond",
            time_zero_offset=conf.time_zero_offset_mon.toValErrTuple())
    else:
        dtm_som2 = dtm_som1
        
    if t is not None:
        t.getTime(msg="After converting TOF to wavelength ")

    del dp_som1, dbm_som1, dtm_som1

    if conf.verbose and (conf.lambda_low_cut is not None or \
                         conf.lambda_high_cut is not None):
        print "Cutting data spectra"

    if t is not None:
        t.getTime(False)

    dp_som3 = dr_lib.cut_spectra(dp_som2, conf.lambda_low_cut,
                                 conf.lambda_high_cut)

    if t is not None:
        t.getTime(msg="After cutting data spectra ")

    del dp_som2

    if conf.beammon_over is not None:
        dbm_som2 = dr_lib.cut_spectra(dbm_som2, conf.lambda_low_cut,
                                       conf.lambda_high_cut)
        
    if conf.dump_wave:
        hlr_utils.write_file(conf.output, "text/Spec", dp_som3,
                             output_ext="pxl",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="pixel wavelength information")
    if conf.dump_bmon_wave:
        if conf.beammon_over is None:
            hlr_utils.write_file(conf.output, "text/Spec", dbm_som2,
                                 output_ext="bmxl",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="beam monitor wavelength information")
        else:
            
            dbm_som2_1 = dr_lib.sum_by_rebin_frac(dbm_som2,
                                               conf.lambda_bins.toNessiList())
            hlr_utils.write_file(conf.output, "text/Spec", dbm_som2_1,
                                 output_ext="bmxl",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="beam monitor override wavelength "\
                                 +"information")
            del dbm_som2_1

    # Step 2: Subtract wavelength dependent background if necessary
    if conf.verbose and bkg_subtract is not None:
        print "Subtracting wavelength dependent background"
        
    if bkg_subtract is not None:
        if t is not None:
            t.getTime(False)

        duration = dp_som3.attr_list["%s-duration" % dataset_type]
        scale = duration.getValue() - acc_down_time[0]
            
        dp_som4 = dr_lib.subtract_axis_dep_bkg(dp_som3, bkg_subtract,
                                               old_scale=bkg_scale,
                                               new_scale=scale)

        if t is not None:
            t.getTime(msg="After subtracting wavelength dependent background ")
    else:
        dp_som4 = dp_som3

    del dp_som3

    # Step 3: Efficiency correct beam monitor
    if conf.verbose and conf.mon_effc:
        print "Efficiency correct beam monitor data"

    if t is not None:
        t.getTime(False)

    if conf.mon_effc:
        dbm_som3 = dr_lib.feff_correct_mon(dbm_som2, inst_name=conf.inst,
                                           eff_const=conf.mon_eff_const)
    else:
        dbm_som3 = dbm_som2

    if t is not None and conf.mon_effc:
        t.getTime(msg="After efficiency correcting beam monitor ")

    if conf.dump_bmon_effc and conf.mon_effc:   
        hlr_utils.write_file(conf.output, "text/Spec", dbm_som3,
                             output_ext="bmel",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="beam monitor wavelength information "\
                             +"(efficiency)")

    del dbm_som2

    # Step 4: Efficiency correct transmission monitor    
    if dtm_som2 is not None:
        if conf.verbose and conf.mon_effc:
            print "Efficiency correct transmission monitor data"

        if t is not None:
            t.getTime(False)

        if conf.mon_effc:
            dtm_som3 = dr_lib.feff_correct_mon(dtm_som2)
        else:
            dtm_som3 = dtm_som2
    else:
        dtm_som3 = dtm_som2            

    if t is not None and conf.mon_effc and dtm_som2 is not None:
        t.getTime(msg="After efficiency correcting beam monitor ")

    # Step 5: Efficiency correct detector pixels
    if conf.det_effc:
        if conf.verbose:
            print "Calculating detector efficiency"

        if t is not None:
            t.getTime(False)

        det_eff = dr_lib.create_det_eff(dp_som4, inst_name=conf.inst,
                                      eff_scale_const=conf.det_eff_scale_const,
                                      eff_atten_const=conf.det_eff_atten_const)

        if t is not None:
            t.getTime(msg="After calculating detector efficiency")

        if conf.verbose:
            print "Applying detector efficiency"

        if t is not None:
            t.getTime(False)

        dp_som5 = common_lib.div_ncerr(dp_som4, det_eff)

        if t is not None:
            t.getTime(msg="After spplying detector efficiency")

    else:
        dp_som5 = dp_som4

    del dp_som4

    # Step 6: Rebin beam monitor axis onto detector pixel axis
    if conf.beammon_over is None:
        if not conf.no_bmon_norm:
            if conf.verbose:
                print "Rebin beam monitor axis to detector pixel axis"

            if t is not None:
                t.getTime(False)

            dbm_som4 = dr_lib.rebin_monitor(dbm_som3, dp_som5, rtype="frac")

            if t is not None:
                t.getTime(msg="After rebinning beam monitor ")
        else:
            dbm_som4 = dbm_som3
    else:
        dbm_som4 = dbm_som3

    del dbm_som3

    if conf.dump_bmon_rebin:
        hlr_utils.write_file(conf.output, "text/Spec", dbm_som4,
                             output_ext="bmrl",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="beam monitor wavelength information "\
                             +"(rebinned)")

    # Step 7: Normalize data by beam monitor
    if not conf.no_bmon_norm:
        if conf.verbose:
            print "Normalizing data by beam monitor"

        if t is not None:
            t.getTime(False)

        dp_som6 = common_lib.div_ncerr(dp_som5, dbm_som4)

        if t is not None:
            t.getTime(msg="After normalizing data by beam monitor ")
    else:
        dp_som6 = dp_som5

    del dp_som5

    if transmission:
        return dp_som6

    if conf.dump_wave_bmnorm:
        dp_som6_1 = dr_lib.sum_by_rebin_frac(dp_som6,
                                             conf.lambda_bins.toNessiList())

        write_message = "combined pixel wavelength information"
        write_message += " (beam monitor normalized)"
        
        hlr_utils.write_file(conf.output, "text/Spec", dp_som6_1,
                             output_ext="pbml",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message=write_message)
        del dp_som6_1

    if conf.dump_wave_r:
        dp_som6_1 = dr_lib.create_param_vs_Y(dp_som6, "radius", "param_array",
                                   conf.r_bins.toNessiList(),
                                   rebin_axis=conf.lambda_bins.toNessiList(),
                                   y_label="counts",
                                   y_units="counts / (Angstrom * m)",
                                   x_labels=["Radius", "Wavelength"], 
                                   x_units=["m", "Angstrom"])

        hlr_utils.write_file(conf.output, "text/Dave2d", dp_som6_1,
                             output_ext="lvr",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="wavelength vs radius information")

        del dp_som6_1

    if conf.dump_wave_theta:
        dp_som6_1 = dr_lib.create_param_vs_Y(dp_som6, "polar", "param_array",
                                   conf.theta_bins.toNessiList(),
                                   rebin_axis=conf.lambda_bins.toNessiList(),
                                   y_label="counts",
                                   y_units="counts / (Angstrom * rads)",
                                   x_labels=["Polar Angle", "Wavelength"], 
                                   x_units=["rads", "Angstrom"])

        hlr_utils.write_file(conf.output, "text/Dave2d", dp_som6_1,
                             output_ext="lvt",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="wavelength vs polar angle information") 

        del dp_som6_1

    # Step 8: Rebin transmission monitor axis onto detector pixel axis
    if trans_data is not None:
        print "Reading in transmission monitor data from file"

        dtm_som3 = dr_lib.add_files([trans_data],
                                    dataset_type=dataset_type,
                                    dst_type="text/Spec",
                                    Verbose=conf.verbose,
                                    Timer=t)

    
    if conf.verbose and dtm_som3 is not None:
        print "Rebin transmission monitor axis to detector pixel axis"
        
    if t is not None:
        t.getTime(False)

    dtm_som4 = dr_lib.rebin_monitor(dtm_som3, dp_som6, rtype="frac")

    if t is not None and dtm_som3 is not None:
        t.getTime(msg="After rebinning transmission monitor ")

    del dtm_som3

    # Step 9: Normalize data by transmission monitor    
    if conf.verbose and dtm_som4 is not None:
        print "Normalizing data by transmission monitor"

    if t is not None:
        t.getTime(False)

    if dtm_som4 is not None:
        # The transmission spectra derived from sas_tranmission does not have
        # the same y information by convention as sample data or a
        # tranmission monitor. Therefore, we'll fake it by setting the
        # y information from the sample data into the transmission
        if trans_data is not None:
            dtm_som4.setYLabel(dp_som6.getYLabel())
            dtm_som4.setYUnits(dp_som6.getYUnits())
        dp_som7 = common_lib.div_ncerr(dp_som6, dtm_som4)
    else:
        dp_som7 = dp_som6

    if t is not None and dtm_som4 is not None:
        t.getTime(msg="After normalizing data by transmission monitor ")

    del dp_som6

    # Step 10: Convert wavelength to Q for data
    if conf.verbose:
        print "Converting data from wavelength to scalar Q"
    
    if t is not None:
        t.getTime(False)

    dp_som8 = common_lib.wavelength_to_scalar_Q(dp_som7)

    if t is not None:
        t.getTime(msg="After converting wavelength to scalar Q ")
        
    del dp_som7

    if conf.facility == "LENS":
        # Step 11: Apply SAS correction factor to data
        if conf.verbose:
            print "Applying geometrical correction"

        if t is not None:
            t.getTime(False)

        dp_som9 = dr_lib.apply_sas_correct(dp_som8)

        if t is not None:
            t.getTime(msg="After applying geometrical correction ")

        return dp_som9
    else:
        return dp_som8
Beispiel #2
0
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import dr_lib
    import DST
    
    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"
            
        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    # Perform Steps 1-11 on sample data
    d_som1 = dr_lib.process_sas_data(config.data, config, timer=tim,
                                     inst_geom_dst=inst_geom_dst,
                                     bkg_subtract=config.bkg_coeff,
                     acc_down_time=config.data_acc_down_time.toValErrTuple(),
                                     bkg_scale=config.bkg_scale,
                                     trans_data=config.data_trans)

    # Perform Steps 1-11 on buffer/solvent only data
    if config.solv is not None:
        s_som1 = dr_lib.process_sas_data(config.solv, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="solvent",
                                         bkg_subtract=config.bkg_coeff,
                     acc_down_time=config.solv_acc_down_time.toValErrTuple(),
                                         bkg_scale=config.bkg_scale,
                                         trans_data=config.solv_trans)
    else:
        s_som1 = None

    # Step 12: Subtract buffer/solvent only spectrum from sample spectrum
    d_som2 = dr_lib.subtract_bkg_from_data(d_som1, s_som1,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="solvent")
    
    del s_som1, d_som1

    # Perform Steps 1-11 on empty-can data
    if config.ecan is not None:
        e_som1 = dr_lib.process_sas_data(config.ecan, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="empty_can",
                                         bkg_subtract=config.bkg_coeff,
                     acc_down_time=config.ecan_acc_down_time.toValErrTuple(),
                                         bkg_scale=config.bkg_scale,
                                         trans_data=config.ecan_trans)
    else:
        e_som1 = None

    # Step 13: Subtract empty-can spectrum from sample spectrum
    d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som1,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="empty_can")
    
    del e_som1, d_som2

    # Perform Steps 1-11 on open beam data
    if config.open is not None:
        o_som1 = dr_lib.process_sas_data(config.open, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="open_beam",
                                         bkg_subtract=config.bkg_coeff,
                     acc_down_time=config.open_acc_down_time.toValErrTuple(),
                                         bkg_scale=config.bkg_scale)
    else:
        o_som1 = None
        
    # Step 14: Subtract open beam spectrum from sample spectrum
    d_som4 = dr_lib.subtract_bkg_from_data(d_som3, o_som1,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="open_beam")
    
    del o_som1, d_som3

    # Perform Steps 1-11 on dark current data
    if config.dkcur is not None:
        dc_som1 = dr_lib.process_sas_data(config.open, config, timer=tim,
                                          inst_geom_dst=inst_geom_dst,
                                          dataset_type="dark_current",
                                          bkg_subtract=config.bkg_coeff)
    else:
        dc_som1 = None
        
    # Step 15: Subtract dark current spectrum from sample spectrum
    d_som5 = dr_lib.subtract_bkg_from_data(d_som4, dc_som1,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="dark_current")
    
    del dc_som1, d_som4    

    # Create 2D distributions is necessary
    if config.dump_Q_r:
        d_som5_1 = dr_lib.create_param_vs_Y(d_som5, "radius", "param_array",
                                       config.r_bins.toNessiList(),
                                       rebin_axis=config.Q_bins.toNessiList(),
                                       binnorm=True,
                                       y_label="S",
                                       y_units="Counts / A^-1 m",
                                       x_labels=["Radius", "Q"],
                                       x_units=["m", "1/Angstroms"])

        hlr_utils.write_file(config.output, "text/Dave2d", d_som5_1,
                             output_ext="qvr", verbose=config.verbose,
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             message="S(r, Q) information")

        del d_som5_1
        
    if config.dump_Q_theta:
        d_som5_1 = dr_lib.create_param_vs_Y(d_som5, "polar", "param_array",
                                       config.theta_bins.toNessiList(),
                                       rebin_axis=config.Q_bins.toNessiList(),
                                       binnorm=True,
                                       y_label="S",
                                       y_units="Counts / A^-1 rads",
                                       x_labels=["Polar Angle", "Q"],
                                       x_units=["rads", "1/Angstroms"])

        hlr_utils.write_file(config.output, "text/Dave2d", d_som5_1,
                             output_ext="qvt", verbose=config.verbose,
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             message="S(theta, Q) information")

        del d_som5_1
        
    # Steps 16 and 17: Rebin and sum all spectra
    if config.verbose:
        print "Rebinning and summing for final spectrum"
            
    if tim is not None:
        tim.getTime(False)

    if config.dump_frac_rebin:
        set_conf = config
    else:
        set_conf = None

    d_som6 = dr_lib.sum_by_rebin_frac(d_som5, config.Q_bins.toNessiList(),
                                      configure=set_conf)

    if tim is not None:
        tim.getTime(msg="After rebinning and summing for spectrum")    

    del d_som5

    if config.facility == "LENS":
        # Step 18: Scale final spectrum by Q bin centers
        if config.verbose:
            print "Scaling final spectrum by Q centers"
        
        if tim is not None:
            tim.getTime(False)

        d_som7 = dr_lib.fix_bin_contents(d_som6, scale=True, width=True,
                                         units="1/Angstroms")

        if tim is not None:
            tim.getTime(msg="After scaling final spectrum")    
    else:
        d_som7 = d_som6

    del d_som6

    # If rescaling factor present, rescale the data
    if config.rescale_final is not None:
        import common_lib
        d_som8 = common_lib.mult_ncerr(d_som7, (config.rescale_final, 0.0))
    else:
        d_som8 = d_som7

    del d_som7
    
    hlr_utils.write_file(config.output, "text/Spec", d_som8,
                         verbose=config.verbose,
                         replace_path=False,
                         replace_ext=False,
                         message="combined S(Q) information")

    # Create 1D canSAS file
    hlr_utils.write_file(config.output, "text/canSAS", d_som8,
                         verbose=config.verbose,
                         output_ext="xml",
                         data_ext=config.ext_replacement,         
                         path_replacement=config.path_replacement,
                         message="combined S(Q) information")
    
    d_som8.attr_list["config"] = config

    hlr_utils.write_file(config.output, "text/rmd", d_som8,
                         output_ext="rmd",
                         data_ext=config.ext_replacement,         
                         path_replacement=config.path_replacement,
                         verbose=config.verbose,
                         message="metadata")

    if tim is not None:
        tim.setOldTime(old_time)
        tim.getTime(msg="Total Running Time")
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST

    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"
            
        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    # Perform early background subtraction if the hwfix flag is used
    if config.hwfix:
        if not config.mc:
            so_axis = "time_of_flight"
        else:
            so_axis = "Time_of_Flight"
        
        bkg_som0 = dr_lib.add_files(config.back,
                                    Data_Paths=config.data_paths.toPath(),
                                    SO_Axis=so_axis,
                                    Signal_ROI=config.roi_file,
                                    dataset_type="background",
                                    Verbose=config.verbose, Timer=tim)

        bkg_som = dr_lib.fix_bin_contents(bkg_som0)
        del bkg_som0
    else:
        bkg_som = None

    # Perform Steps 1-15 on sample data
    d_som1 = dr_lib.process_igs_data(config.data, config, timer=tim,
                                     inst_geom_dst=inst_geom_dst,
                                     tib_const=config.tib_data_const,
                                     bkg_som=bkg_som)

    # Perform Steps 1-15 on empty can data
    if config.ecan is not None:
        e_som1 = dr_lib.process_igs_data(config.ecan, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="empty_can",
                                         tib_const=config.tib_ecan_const,
                                         bkg_som=bkg_som)
    else:
        e_som1 = None

    # Perform Steps 1-15 on normalization data            
    if config.norm is not None:
        n_som1 = dr_lib.process_igs_data(config.norm, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="normalization",
                                         tib_const=config.tib_norm_const,
                                         bkg_som=bkg_som)
    else:
        n_som1 = None

    # Perform Steps 1-15 on background data
    if config.back is not None:
        b_som1 = dr_lib.process_igs_data(config.back, config, timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="background",
                                         tib_const=config.tib_back_const,
                                         bkg_som=bkg_som)
    else:
        b_som1 = None

    # Perform Step 1-15 on direct scattering background data
    if config.dsback is not None:
        ds_som1 = dr_lib.process_igs_data(config.dsback, config, timer=tim,
                                          inst_geom_dst=inst_geom_dst,
                                          tib_const=config.tib_dsback_const,
                                          dataset_type="dsbackground",
                                          bkg_som=bkg_som)

        # Note: time_zero_slope MUST be a tuple
        if config.time_zero_slope is not None:
            ds_som1.attr_list["Time_zero_slope"] = \
                                      config.time_zero_slope.toValErrTuple()

        # Note: time_zero_offset MUST be a tuple
        if config.time_zero_offset is not None:
            ds_som1.attr_list["Time_zero_offset"] = \
                                      config.time_zero_offset.toValErrTuple()
        
        # Step 16: Linearly interpolate TOF elastic range in direct scattering
        #          background data

        # First convert TOF elastic range to appropriate pixel initial
        # wavelengths
        if config.verbose:
            print "Determining initial wavelength range for elastic line"

        if tim is not None:
            tim.getTime(False)
        
        if config.tof_elastic is None:
            # Units are in microseconds
            tof_elastic_range = (140300, 141300)
        else:
            tof_elastic_range = config.tof_elastic
        
        ctof_elastic_low = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[0], 0.0),
               ds_som1)
        
        ctof_elastic_high = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[1], 0.0),
               ds_som1)
        
        ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0])
                              for i in xrange(len(ctof_elastic_low))]

        if tim is not None:
            tim.getTime(msg="After calculating initial wavelength range for "\
                        +"elastic line ")

        del ctof_elastic_low, ctof_elastic_high

        if config.split:
            lambda_filter = [(d_som1[i].axis[0].val[0],
                              d_som1[i].axis[0].val[-1])
                             for i in xrange(len(d_som1))]
        else:
            lambda_filter = None

        # Now interpolate spectra between TOF elastic range (converted to
        # initial wavelength)
        if config.verbose:
            print "Linearly interpolating direct scattering spectra"

        if tim is not None:
            tim.getTime(False)
            
        ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1, ctof_elastic_range,
                                                 filter_axis=lambda_filter)

        if tim is not None:
            tim.getTime(msg="After linearly interpolating direct scattering "\
                        +"spectra ")

        if config.dump_dslin:
            ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\
                                  rebin_axis=config.lambda_bins.toNessiList())

            hlr_utils.write_file(config.output, "text/Spec", ds_som2_1,
                                 output_ext="lin",
                                 data_ext=config.ext_replacement,    
                                 path_replacement=config.path_replacement,
                                 verbose=config.verbose,
                                 message="dsbackground linear interpolation")
            del ds_som2_1
        
        del ds_som1
    else:
        ds_som2 = None

    if inst_geom_dst is not None:
        inst_geom_dst.release_resource()

    # Steps 17-18: Subtract background spectrum from sample spectrum
    if config.dsback is None:
        back_som = b_som1
        bkg_type = "background"
    else:
        back_som = ds_som2
        bkg_type = "dsbackground"
    d_som2 = dr_lib.subtract_bkg_from_data(d_som1, back_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2=bkg_type,
                                           scale=config.scale_bs)

    if config.dsback is not None:
        del ds_som2 

    # Step 19: Zero region outside TOF elastic for background for empty can
    if config.dsback is None:
        bcs_som = b_som1
        cs_som = e_som1
    else:
        if config.verbose and b_som1 is not None:
            print "Zeroing background spectra"

        if tim is not None and b_som1 is not None:
            tim.getTime(False)
            
        bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range)

        if tim is not None and b_som1 is not None:
            tim.getTime(msg="After zeroing background spectra")


        if config.verbose and e_som1 is not None:
            print "Zeroing empty can spectra"

        if tim is not None and e_som1 is not None:
            tim.getTime(False)
            
        cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range)

        if tim is not None and e_som1 is not None:
            tim.getTime(msg="After zeroing empty can spectra")
            
        del ctof_elastic_range

    # Steps 20-21: Subtract background spectrum from empty can spectrum    
    e_som2 = dr_lib.subtract_bkg_from_data(cs_som, bcs_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data-empty_can",
                                           dataset2="background",
                                           scale=config.scale_bcs)

    # Steps 22-23: Subtract background spectrum from empty can spectrum for
    #              normalization

    try:
        config.pre_norm
    except AttributeError:
        config.pre_norm = False

    if not config.pre_norm:
        e_som3 = dr_lib.subtract_bkg_from_data(e_som1, b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="norm-empty_can",
                                               dataset2="background",
                                               scale=config.scale_bcn)
    else:
        e_som3 = None

    # Steps 24-25: Subtract background spectrum from normalization spectrum
    if not config.pre_norm:
        n_som2 = dr_lib.subtract_bkg_from_data(n_som1, b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="background",
                                               scale=config.scale_bn)
    else:
        n_som2 = n_som1

    del b_som1, e_som1, bcs_som, cs_som

    # Steps 26-27: Subtract empty can spectrum from sample spectrum    
    d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som2,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="empty_can",
                                           scale=config.scale_cs)

    del d_som2, e_som2
    
    # Steps 28-29: Subtract empty can spectrum from normalization spectrum
    if not config.pre_norm:
        n_som3 = dr_lib.subtract_bkg_from_data(n_som2, e_som3,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="empty_can",
                                               scale=config.scale_cn)
    else:
        n_som3 = n_som2

    del n_som2, e_som3

    # Step 30-31: Integrate normalization spectra
    if config.verbose and n_som3 is not None and not config.pre_norm:
        print "Integrating normalization spectra"

    if not config.pre_norm:
        norm_int = dr_lib.integrate_spectra(n_som3, start=config.norm_start,
                                            end=config.norm_end, norm=True)
    else:
        norm_int = n_som3

    del n_som3
        
    # Step 32: Normalize data by integrated values
    if config.verbose and norm_int is not None:
        print "Normalizing data by normalization data"

    if norm_int is not None:
        d_som4 = common_lib.div_ncerr(d_som3, norm_int)
    else:
        d_som4 = d_som3

    if norm_int is not None:
        if tim is not None:
            tim.getTime(msg="After normalizing data ")

    del d_som3, norm_int

    if config.dump_norm:
        if tim is not None:
            tim.getTime(False)

        hlr_utils.write_file(config.output, "text/Spec", d_som4,
                             output_ext="wvn",
                             data_ext=config.ext_replacement,    
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="wavelength (vanadium norm) information")

        if tim is not None:
            tim.getTime(msg="After writing wavelength (vanadium norm) info ")

    # Steps 33 to end: Creating S(Q,E)
    if config.Q_bins is not None:
        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_E_vs_Q_igs(d_som4,
                                          config.E_bins.toNessiList(),
                                          config.Q_bins.toNessiList(),
                                          so_id="Full Detector",
                                          y_label="counts",
                                          y_units="counts / (ueV * A^-1)",
                                          x_labels=["Q transfer",
                                                    "energy transfer"],
                                          x_units=["1/Angstroms","ueV"],
                                          split=config.split,
                                          Q_filter=False,
                                          configure=config)
        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

        del d_som4
        
    # Steps 33 to 36: Create S(-cos(polar), E)
    elif config.ncospol_bins is not None:
        if config.verbose:
            print "Convert wavelength to energy transfer"

        if tim is not None:
            tim.getTime(False)

        d_som4a = dr_lib.energy_transfer(d_som4, "IGS", "Wavelength_final",
                                         sa_norm=True, scale=True,
                                         change_units=True)

        if tim is not None:
            tim.getTime(msg="After wavelength to energy transfer conversion ")

        del d_som4

        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_param_vs_Y(d_som4a, "polar",
                                        "negcos_param_array",
                                        config.ncospol_bins.toNessiList(),
                                        rebin_axis=config.E_bins.toNessiList(),
                                        y_label="counts",
                                        y_units="counts / ueV",
                                        x_labels=["-cos(polar)",
                                                  "Energy Transfer"], 
                                        x_units=["", "ueV"])

        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")        
    
    # If rescaling factor present, rescale the data
    if config.rescale_final is not None and not config.split:
        d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0))
    else:
        d_som6 = d_som5

    if tim is None:
        old_time = None

    if not __name__ == "amorphous_reduction_sqe":
        del d_som5
        __write_output(d_som6, config, tim, old_time)
    else:
        if config.create_output:
            del d_som5
            __write_output(d_som6, config, tim, old_time)
        else:
            return d_som6
def run(config, tim=None):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}

    @param tim: (OPTIONAL) Object that will allow the method to perform
                           timing evaluations.
    @type tim: C{sns_time.DiffTime}
    """
    import common_lib
    import dr_lib
    import DST

    if tim is not None:
        tim.getTime(False)
        old_time = tim.getOldTime()

    if config.data is None:
        raise RuntimeError("Need to pass a data filename to the driver "\
                           +"script.")

    # Read in geometry if one is provided
    if config.inst_geom is not None:
        if config.verbose:
            print "Reading in instrument geometry file"

        inst_geom_dst = DST.getInstance("application/x-NxsGeom",
                                        config.inst_geom)
    else:
        inst_geom_dst = None

    # Perform early background subtraction if the hwfix flag is used
    if config.hwfix:
        if not config.mc:
            so_axis = "time_of_flight"
        else:
            so_axis = "Time_of_Flight"

        bkg_som0 = dr_lib.add_files(config.back,
                                    Data_Paths=config.data_paths.toPath(),
                                    SO_Axis=so_axis,
                                    Signal_ROI=config.roi_file,
                                    dataset_type="background",
                                    Verbose=config.verbose,
                                    Timer=tim)

        bkg_som = dr_lib.fix_bin_contents(bkg_som0)
        del bkg_som0
    else:
        bkg_som = None

    # Perform Steps 1-15 on sample data
    d_som1 = dr_lib.process_igs_data(config.data,
                                     config,
                                     timer=tim,
                                     inst_geom_dst=inst_geom_dst,
                                     tib_const=config.tib_data_const,
                                     bkg_som=bkg_som)

    # Perform Steps 1-15 on empty can data
    if config.ecan is not None:
        e_som1 = dr_lib.process_igs_data(config.ecan,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="empty_can",
                                         tib_const=config.tib_ecan_const,
                                         bkg_som=bkg_som)
    else:
        e_som1 = None

    # Perform Steps 1-15 on normalization data
    if config.norm is not None:
        n_som1 = dr_lib.process_igs_data(config.norm,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="normalization",
                                         tib_const=config.tib_norm_const,
                                         bkg_som=bkg_som)
    else:
        n_som1 = None

    # Perform Steps 1-15 on background data
    if config.back is not None:
        b_som1 = dr_lib.process_igs_data(config.back,
                                         config,
                                         timer=tim,
                                         inst_geom_dst=inst_geom_dst,
                                         dataset_type="background",
                                         tib_const=config.tib_back_const,
                                         bkg_som=bkg_som)
    else:
        b_som1 = None

    # Perform Step 1-15 on direct scattering background data
    if config.dsback is not None:
        ds_som1 = dr_lib.process_igs_data(config.dsback,
                                          config,
                                          timer=tim,
                                          inst_geom_dst=inst_geom_dst,
                                          tib_const=config.tib_dsback_const,
                                          dataset_type="dsbackground",
                                          bkg_som=bkg_som)

        # Note: time_zero_slope MUST be a tuple
        if config.time_zero_slope is not None:
            ds_som1.attr_list["Time_zero_slope"] = \
                                      config.time_zero_slope.toValErrTuple()

        # Note: time_zero_offset MUST be a tuple
        if config.time_zero_offset is not None:
            ds_som1.attr_list["Time_zero_offset"] = \
                                      config.time_zero_offset.toValErrTuple()

        # Step 16: Linearly interpolate TOF elastic range in direct scattering
        #          background data

        # First convert TOF elastic range to appropriate pixel initial
        # wavelengths
        if config.verbose:
            print "Determining initial wavelength range for elastic line"

        if tim is not None:
            tim.getTime(False)

        if config.tof_elastic is None:
            # Units are in microseconds
            tof_elastic_range = (140300, 141300)
        else:
            tof_elastic_range = config.tof_elastic

        ctof_elastic_low = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[0], 0.0),
               ds_som1)

        ctof_elastic_high = dr_lib.convert_single_to_list(\
               "tof_to_initial_wavelength_igs_lin_time_zero",
               (tof_elastic_range[1], 0.0),
               ds_som1)

        ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0])
                              for i in xrange(len(ctof_elastic_low))]

        if tim is not None:
            tim.getTime(msg="After calculating initial wavelength range for "\
                        +"elastic line ")

        del ctof_elastic_low, ctof_elastic_high

        if config.split:
            lambda_filter = [(d_som1[i].axis[0].val[0],
                              d_som1[i].axis[0].val[-1])
                             for i in xrange(len(d_som1))]
        else:
            lambda_filter = None

        # Now interpolate spectra between TOF elastic range (converted to
        # initial wavelength)
        if config.verbose:
            print "Linearly interpolating direct scattering spectra"

        if tim is not None:
            tim.getTime(False)

        ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1,
                                                 ctof_elastic_range,
                                                 filter_axis=lambda_filter)

        if tim is not None:
            tim.getTime(msg="After linearly interpolating direct scattering "\
                        +"spectra ")

        if config.dump_dslin:
            ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\
                                  rebin_axis=config.lambda_bins.toNessiList())

            hlr_utils.write_file(config.output,
                                 "text/Spec",
                                 ds_som2_1,
                                 output_ext="lin",
                                 data_ext=config.ext_replacement,
                                 path_replacement=config.path_replacement,
                                 verbose=config.verbose,
                                 message="dsbackground linear interpolation")
            del ds_som2_1

        del ds_som1
    else:
        ds_som2 = None

    if inst_geom_dst is not None:
        inst_geom_dst.release_resource()

    # Steps 17-18: Subtract background spectrum from sample spectrum
    if config.dsback is None:
        back_som = b_som1
        bkg_type = "background"
    else:
        back_som = ds_som2
        bkg_type = "dsbackground"
    d_som2 = dr_lib.subtract_bkg_from_data(d_som1,
                                           back_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2=bkg_type,
                                           scale=config.scale_bs)

    if config.dsback is not None:
        del ds_som2

    # Step 19: Zero region outside TOF elastic for background for empty can
    if config.dsback is None:
        bcs_som = b_som1
        cs_som = e_som1
    else:
        if config.verbose and b_som1 is not None:
            print "Zeroing background spectra"

        if tim is not None and b_som1 is not None:
            tim.getTime(False)

        bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range)

        if tim is not None and b_som1 is not None:
            tim.getTime(msg="After zeroing background spectra")

        if config.verbose and e_som1 is not None:
            print "Zeroing empty can spectra"

        if tim is not None and e_som1 is not None:
            tim.getTime(False)

        cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range)

        if tim is not None and e_som1 is not None:
            tim.getTime(msg="After zeroing empty can spectra")

        del ctof_elastic_range

    # Steps 20-21: Subtract background spectrum from empty can spectrum
    e_som2 = dr_lib.subtract_bkg_from_data(cs_som,
                                           bcs_som,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data-empty_can",
                                           dataset2="background",
                                           scale=config.scale_bcs)

    # Steps 22-23: Subtract background spectrum from empty can spectrum for
    #              normalization

    try:
        config.pre_norm
    except AttributeError:
        config.pre_norm = False

    if not config.pre_norm:
        e_som3 = dr_lib.subtract_bkg_from_data(e_som1,
                                               b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="norm-empty_can",
                                               dataset2="background",
                                               scale=config.scale_bcn)
    else:
        e_som3 = None

    # Steps 24-25: Subtract background spectrum from normalization spectrum
    if not config.pre_norm:
        n_som2 = dr_lib.subtract_bkg_from_data(n_som1,
                                               b_som1,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="background",
                                               scale=config.scale_bn)
    else:
        n_som2 = n_som1

    del b_som1, e_som1, bcs_som, cs_som

    # Steps 26-27: Subtract empty can spectrum from sample spectrum
    d_som3 = dr_lib.subtract_bkg_from_data(d_som2,
                                           e_som2,
                                           verbose=config.verbose,
                                           timer=tim,
                                           dataset1="data",
                                           dataset2="empty_can",
                                           scale=config.scale_cs)

    del d_som2, e_som2

    # Steps 28-29: Subtract empty can spectrum from normalization spectrum
    if not config.pre_norm:
        n_som3 = dr_lib.subtract_bkg_from_data(n_som2,
                                               e_som3,
                                               verbose=config.verbose,
                                               timer=tim,
                                               dataset1="normalization",
                                               dataset2="empty_can",
                                               scale=config.scale_cn)
    else:
        n_som3 = n_som2

    del n_som2, e_som3

    # Step 30-31: Integrate normalization spectra
    if config.verbose and n_som3 is not None and not config.pre_norm:
        print "Integrating normalization spectra"

    if not config.pre_norm:
        norm_int = dr_lib.integrate_spectra(n_som3,
                                            start=config.norm_start,
                                            end=config.norm_end,
                                            norm=True)
    else:
        norm_int = n_som3

    del n_som3

    # Step 32: Normalize data by integrated values
    if config.verbose and norm_int is not None:
        print "Normalizing data by normalization data"

    if norm_int is not None:
        d_som4 = common_lib.div_ncerr(d_som3, norm_int)
    else:
        d_som4 = d_som3

    if norm_int is not None:
        if tim is not None:
            tim.getTime(msg="After normalizing data ")

    del d_som3, norm_int

    if config.dump_norm:
        if tim is not None:
            tim.getTime(False)

        hlr_utils.write_file(config.output,
                             "text/Spec",
                             d_som4,
                             output_ext="wvn",
                             data_ext=config.ext_replacement,
                             path_replacement=config.path_replacement,
                             verbose=config.verbose,
                             message="wavelength (vanadium norm) information")

        if tim is not None:
            tim.getTime(msg="After writing wavelength (vanadium norm) info ")

    # Steps 33 to end: Creating S(Q,E)
    if config.Q_bins is not None:
        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_E_vs_Q_igs(
            d_som4,
            config.E_bins.toNessiList(),
            config.Q_bins.toNessiList(),
            so_id="Full Detector",
            y_label="counts",
            y_units="counts / (ueV * A^-1)",
            x_labels=["Q transfer", "energy transfer"],
            x_units=["1/Angstroms", "ueV"],
            split=config.split,
            Q_filter=False,
            configure=config)
        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

        del d_som4

    # Steps 33 to 36: Create S(-cos(polar), E)
    elif config.ncospol_bins is not None:
        if config.verbose:
            print "Convert wavelength to energy transfer"

        if tim is not None:
            tim.getTime(False)

        d_som4a = dr_lib.energy_transfer(d_som4,
                                         "IGS",
                                         "Wavelength_final",
                                         sa_norm=True,
                                         scale=True,
                                         change_units=True)

        if tim is not None:
            tim.getTime(msg="After wavelength to energy transfer conversion ")

        del d_som4

        if config.verbose:
            print "Creating 2D spectrum"

        if tim is not None:
            tim.getTime(False)

        d_som5 = dr_lib.create_param_vs_Y(
            d_som4a,
            "polar",
            "negcos_param_array",
            config.ncospol_bins.toNessiList(),
            rebin_axis=config.E_bins.toNessiList(),
            y_label="counts",
            y_units="counts / ueV",
            x_labels=["-cos(polar)", "Energy Transfer"],
            x_units=["", "ueV"])

        if tim is not None:
            tim.getTime(msg="After creation of final spectrum ")

    # If rescaling factor present, rescale the data
    if config.rescale_final is not None and not config.split:
        d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0))
    else:
        d_som6 = d_som5

    if tim is None:
        old_time = None

    if not __name__ == "amorphous_reduction_sqe":
        del d_som5
        __write_output(d_som6, config, tim, old_time)
    else:
        if config.create_output:
            del d_som5
            __write_output(d_som6, config, tim, old_time)
        else:
            return d_som6