x = np.zeros((n_data, 64 * 64), dtype=float) y = np.zeros((n_data), dtype=int) for i, add in enumerate(adds): xp = imread(add) xp = xp.reshape(-1) xp = np.array(xp, dtype=int) x[i] = xp if 'B' in add: y[i] = 0 else: y[i] = 1 return x, y X_test, y_test = batch() add = './res/' mce.ch_mkdir(add) if j < 6: res = full_test(X_test, X_test, y_test, j, levs, o_list) with open(add + dr_name[j] + '_' + str(i) + '.pkl', 'wb') as f: pickle.dump(res, f) else: res = sk_check(X_test, X_test, y_test, o_list) with open(add + 'sk_' + str(i) + '.pkl', 'wb') as f: pickle.dump(res, f)
import sys import numpy as np import drama as drm #import matplotlib.pylab as plt #from matplotlib import gridspec n_ftrs = 100 noise = 0.8 scl = 0.00 sft = 0.00 i_sig = int(sys.argv[1]) n_train = int(sys.argv[2]) nn = int(sys.argv[3]) dir_add = './' + sys.argv[0][:-3] + '_res/' drm.ch_mkdir(dir_add) if os.path.exists(dir_add + str(i_sig) + '_' + str(n_train) + '_' + str(nn) + '.pickle'): exit() x = np.linspace(0, 1, n_ftrs) X, y = drm.synt_mix(i_sig, n_ftrs, x=x, n_inlier=1000, n_outlier=5, sigma=noise, n1=scl, n2=sft, n3=scl,