def _distplot(dists, color, label, distkey, plot_type=plot_type): data = sorted(dists) ax = df2.gca() min_ = distkey2_min[distkey] max_ = distkey2_max[distkey] if plot_type == 'plot': df2.plot(data, color=color, label=label) #xticks = np.linspace(np.min(data), np.max(data), 3) #yticks = np.linspace(0, len(data), 5) #ax.set_xticks(xticks) #ax.set_yticks(yticks) ax.set_ylim(min_, max_) ax.set_xlim(0, len(dists)) ax.set_ylabel('distance') ax.set_xlabel('matches indexes (sorted by distance)') df2.legend(loc='lower right') if plot_type == 'pdf': df2.plot_pdf(data, color=color, label=label) ax.set_ylabel('pr') ax.set_xlabel('distance') ax.set_xlim(min_, max_) df2.legend(loc='upper right') df2.dark_background(ax) df2.small_xticks(ax) df2.small_yticks(ax)
def plot_rank_histogram(allres, orgres_type): print('[viz] plotting %r rank histogram' % orgres_type) ranks = allres.__dict__[orgres_type].ranks label = 'P(rank | ' + orgres_type + ' match)' title = orgres_type + ' match rankings histogram\n' + allres.title_suffix df2.figure(fnum=FIGNUM, doclf=True, title=title) df2.draw_histpdf(ranks, label=label) # FIXME df2.set_xlabel('ground truth ranks') df2.set_ylabel('frequency') df2.legend() __dump_or_browse(allres.hs, 'rankviz')
def plot_score_pdf(allres, orgres_type, colorx=0.0, variation_truncate=False): print('[viz] plotting ' + orgres_type + ' score pdf') title = orgres_type + ' match score frequencies\n' + allres.title_suffix scores = allres.__dict__[orgres_type].scores print('[viz] len(scores) = %r ' % (len(scores), )) label = 'P(score | %r)' % orgres_type df2.figure(fnum=FIGNUM, doclf=True, title=title) df2.draw_pdf(scores, label=label, colorx=colorx) if variation_truncate: df2.variation_trunctate(scores) #df2.variation_trunctate(false.scores) df2.set_xlabel('score') df2.set_ylabel('frequency') df2.legend() __dump_or_browse(allres.hs, 'scoreviz')
def in_depth_ellipse2x2(rchip, kp): #----------------------- # SETUP #----------------------- from hotspotter import draw_func2 as df2 np.set_printoptions(precision=8) tau = 2 * np.pi df2.reset() df2.figure(9003, docla=True, doclf=True) ax = df2.gca() ax.invert_yaxis() def _plotpts(data, px, color=df2.BLUE, label=''): #df2.figure(9003, docla=True, pnum=(1, 1, px)) df2.plot2(data.T[0], data.T[1], '.', '', color=color, label=label) df2.update() def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''): ax = df2.gca() arrowargs = dict(head_width=.5, length_includes_head=True, label=label) arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs) arrow.set_edgecolor(color) arrow.set_facecolor(color) ax.add_patch(arrow) df2.update() def _2x2_eig(M2x2): (evals, evecs) = np.linalg.eig(M2x2) l1, l2 = evals v1, v2 = evecs return l1, l2, v1, v2 #----------------------- # INPUT #----------------------- # We will call perdoch's invA = invV print('--------------------------------') print('Let V = Perdoch.A') print('Let Z = Perdoch.E') print('--------------------------------') print('Input from Perdoch\'s detector: ') # We are given the keypoint in invA format (x, y, ia11, ia21, ia22), ia12 = kp, 0 invV = np.array([[ia11, ia12], [ia21, ia22]]) V = np.linalg.inv(invV) # <HACK> #invV = V / np.linalg.det(V) #V = np.linalg.inv(V) # </HACK> Z = (V.T).dot(V) print('invV is a transform from points on a unit-circle to the ellipse') helpers.horiz_print('invV = ', invV) print('--------------------------------') print('V is a transformation from points on the ellipse to a unit circle') helpers.horiz_print('V = ', V) print('--------------------------------') print('Points on a matrix satisfy (x).T.dot(Z).dot(x) = 1') print('where Z = (V.T).dot(V)') helpers.horiz_print('Z = ', Z) # Define points on a unit circle theta_list = np.linspace(0, tau, 50) cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list]) # Transform those points to the ellipse using invV ellipse_pts1 = invV.dot(cicrle_pts.T).T # Transform those points to the ellipse using V ellipse_pts2 = V.dot(cicrle_pts.T).T #Lets check our assertion: (x_).T.dot(Z).dot(x_) = 1 checks1 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts1] checks2 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts2] assert all([abs(1 - check) < 1E-11 for check in checks1]) #assert all([abs(1 - check) < 1E-11 for check in checks2]) print('... all of our plotted points satisfy this') #======================= # THE CONIC SECTION #======================= # All of this was from the Perdoch paper, now lets move into conic sections # We will use the notation from wikipedia # http://en.wikipedia.org/wiki/Conic_section # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections #----------------------- # MATRIX REPRESENTATION #----------------------- # The matrix representation of a conic is: (A, B2, B2_, C) = Z.flatten() (D, E, F) = (0, 0, 1) B = B2 * 2 assert B2 == B2_, 'matrix should by symmetric' print('--------------------------------') print('Now, using wikipedia\' matrix representation of a conic.') con = np.array(((' A', 'B / 2', 'D / 2'), ('B / 2', ' C', 'E / 2'), ('D / 2', 'E / 2', ' F'))) helpers.horiz_print('A matrix A_Q = ', con) # A_Q is our conic section (aka ellipse matrix) A_Q = np.array(((A, B / 2, D / 2), (B / 2, C, E / 2), (D / 2, E / 2, F))) helpers.horiz_print('A_Q = ', A_Q) #----------------------- # DEGENERATE CONICS #----------------------- print('----------------------------------') print('As long as det(A_Q) != it is not degenerate.') print('If the conic is not degenerate, we can use the 2x2 minor: A_33') print('det(A_Q) = %s' % str(np.linalg.det(A_Q))) assert np.linalg.det(A_Q) != 0, 'degenerate conic' A_33 = np.array(((A, B / 2), (B / 2, C))) helpers.horiz_print('A_33 = ', A_33) #----------------------- # CONIC CLASSIFICATION #----------------------- print('----------------------------------') print('The determinant of the minor classifies the type of conic it is') print('(det == 0): parabola, (det < 0): hyperbola, (det > 0): ellipse') print('det(A_33) = %s' % str(np.linalg.det(A_33))) assert np.linalg.det(A_33) > 0, 'conic is not an ellipse' print('... this is indeed an ellipse') #----------------------- # CONIC CENTER #----------------------- print('----------------------------------') print('the centers of the ellipse are obtained by: ') print('x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)') print('y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)') # Centers are obtained by solving for where the gradient of the quadratic # becomes 0. Without going through the derivation the calculation is... # These should be 0, 0 if we are at the origin, or our original x, y # coordinate specified by the keypoints. I'm doing the calculation just for # shits and giggles x_center = (B * E - (2 * C * D)) / (4 * A * C - B**2) y_center = (D * B - (2 * A * E)) / (4 * A * C - B**2) helpers.horiz_print('x_center = ', x_center) helpers.horiz_print('y_center = ', y_center) #----------------------- # MAJOR AND MINOR AXES #----------------------- # Now we are going to determine the major and minor axis # of this beast. It just the center augmented by the eigenvecs print('----------------------------------') # The angle between the major axis and our x axis is: l1, l2, v1, v2 = _2x2_eig(A_33) x_axis = np.array([1, 0]) theta = np.arccos(x_axis.dot(v1)) # The eccentricity is determined by: nu = 1 numer = 2 * np.sqrt((A - C)**2 + B**2) denom = nu * (A + C) + np.sqrt((A - C)**2 + B**2) eccentricity = np.sqrt(numer / denom) from scipy.special import ellipeinc #----------------------- # DRAWING #----------------------- # Lets start off by drawing the ellipse that we are goign to work with # Create unit circle sample # Draw the keypoint using the tried and true df2 # Other things should subsiquently align df2.draw_kpts2(np.array([(0, 0, ia11, ia21, ia22)]), ell_linewidth=4, ell_color=df2.DEEP_PINK, ell_alpha=1, arrow=True, rect=True) # Plot ellipse points _plotpts(ellipse_pts1, 0, df2.YELLOW, label='invV.dot(cicrle_pts.T).T') # Plot ellipse axis # !HELP! I DO NOT KNOW WHY I HAVE TO DIVIDE, SQUARE ROOT, AND NEGATE!!! l1, l2, v1, v2 = _2x2_eig(A_33) dx1, dy1 = (v1 / np.sqrt(l1)) dx2, dy2 = (v2 / np.sqrt(l2)) _plotarrow(0, 0, dx1, -dy1, color=df2.ORANGE, label='ellipse axis') _plotarrow(0, 0, dx2, -dy2, color=df2.ORANGE) # Plot ellipse orientation orient_axis = invV.dot(np.eye(2)) dx1, dx2, dy1, dy2 = orient_axis.flatten() _plotarrow(0, 0, dx1, dy1, color=df2.BLUE, label='ellipse rotation') _plotarrow(0, 0, dx2, dy2, color=df2.BLUE) df2.legend() df2.dark_background() df2.gca().invert_yaxis() return locals()
def in_depth_ellipse2x2(rchip, kp): #----------------------- # SETUP #----------------------- from hotspotter import draw_func2 as df2 np.set_printoptions(precision=8) tau = 2 * np.pi df2.reset() df2.figure(9003, docla=True, doclf=True) ax = df2.gca() ax.invert_yaxis() def _plotpts(data, px, color=df2.BLUE, label=''): #df2.figure(9003, docla=True, pnum=(1, 1, px)) df2.plot2(data.T[0], data.T[1], '.', '', color=color, label=label) df2.update() def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''): ax = df2.gca() arrowargs = dict(head_width=.5, length_includes_head=True, label=label) arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs) arrow.set_edgecolor(color) arrow.set_facecolor(color) ax.add_patch(arrow) df2.update() def _2x2_eig(M2x2): (evals, evecs) = np.linalg.eig(M2x2) l1, l2 = evals v1, v2 = evecs return l1, l2, v1, v2 #----------------------- # INPUT #----------------------- # We will call perdoch's invA = invV print('--------------------------------') print('Let V = Perdoch.A') print('Let Z = Perdoch.E') print('--------------------------------') print('Input from Perdoch\'s detector: ') # We are given the keypoint in invA format (x, y, ia11, ia21, ia22), ia12 = kp, 0 invV = np.array([[ia11, ia12], [ia21, ia22]]) V = np.linalg.inv(invV) # <HACK> #invV = V / np.linalg.det(V) #V = np.linalg.inv(V) # </HACK> Z = (V.T).dot(V) print('invV is a transform from points on a unit-circle to the ellipse') helpers.horiz_print('invV = ', invV) print('--------------------------------') print('V is a transformation from points on the ellipse to a unit circle') helpers.horiz_print('V = ', V) print('--------------------------------') print('Points on a matrix satisfy (x).T.dot(Z).dot(x) = 1') print('where Z = (V.T).dot(V)') helpers.horiz_print('Z = ', Z) # Define points on a unit circle theta_list = np.linspace(0, tau, 50) cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list]) # Transform those points to the ellipse using invV ellipse_pts1 = invV.dot(cicrle_pts.T).T # Transform those points to the ellipse using V ellipse_pts2 = V.dot(cicrle_pts.T).T #Lets check our assertion: (x_).T.dot(Z).dot(x_) = 1 checks1 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts1] checks2 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts2] assert all([abs(1 - check) < 1E-11 for check in checks1]) #assert all([abs(1 - check) < 1E-11 for check in checks2]) print('... all of our plotted points satisfy this') #======================= # THE CONIC SECTION #======================= # All of this was from the Perdoch paper, now lets move into conic sections # We will use the notation from wikipedia # http://en.wikipedia.org/wiki/Conic_section # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections #----------------------- # MATRIX REPRESENTATION #----------------------- # The matrix representation of a conic is: (A, B2, B2_, C) = Z.flatten() (D, E, F) = (0, 0, 1) B = B2 * 2 assert B2 == B2_, 'matrix should by symmetric' print('--------------------------------') print('Now, using wikipedia\' matrix representation of a conic.') con = np.array(((' A', 'B / 2', 'D / 2'), ('B / 2', ' C', 'E / 2'), ('D / 2', 'E / 2', ' F'))) helpers.horiz_print('A matrix A_Q = ', con) # A_Q is our conic section (aka ellipse matrix) A_Q = np.array((( A, B / 2, D / 2), (B / 2, C, E / 2), (D / 2, E / 2, F))) helpers.horiz_print('A_Q = ', A_Q) #----------------------- # DEGENERATE CONICS #----------------------- print('----------------------------------') print('As long as det(A_Q) != it is not degenerate.') print('If the conic is not degenerate, we can use the 2x2 minor: A_33') print('det(A_Q) = %s' % str(np.linalg.det(A_Q))) assert np.linalg.det(A_Q) != 0, 'degenerate conic' A_33 = np.array((( A, B / 2), (B / 2, C))) helpers.horiz_print('A_33 = ', A_33) #----------------------- # CONIC CLASSIFICATION #----------------------- print('----------------------------------') print('The determinant of the minor classifies the type of conic it is') print('(det == 0): parabola, (det < 0): hyperbola, (det > 0): ellipse') print('det(A_33) = %s' % str(np.linalg.det(A_33))) assert np.linalg.det(A_33) > 0, 'conic is not an ellipse' print('... this is indeed an ellipse') #----------------------- # CONIC CENTER #----------------------- print('----------------------------------') print('the centers of the ellipse are obtained by: ') print('x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)') print('y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)') # Centers are obtained by solving for where the gradient of the quadratic # becomes 0. Without going through the derivation the calculation is... # These should be 0, 0 if we are at the origin, or our original x, y # coordinate specified by the keypoints. I'm doing the calculation just for # shits and giggles x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2) y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2) helpers.horiz_print('x_center = ', x_center) helpers.horiz_print('y_center = ', y_center) #----------------------- # MAJOR AND MINOR AXES #----------------------- # Now we are going to determine the major and minor axis # of this beast. It just the center augmented by the eigenvecs print('----------------------------------') # The angle between the major axis and our x axis is: l1, l2, v1, v2 = _2x2_eig(A_33) x_axis = np.array([1, 0]) theta = np.arccos(x_axis.dot(v1)) # The eccentricity is determined by: nu = 1 numer = 2 * np.sqrt((A - C) ** 2 + B ** 2) denom = nu * (A + C) + np.sqrt((A - C) ** 2 + B ** 2) eccentricity = np.sqrt(numer / denom) from scipy.special import ellipeinc #----------------------- # DRAWING #----------------------- # Lets start off by drawing the ellipse that we are goign to work with # Create unit circle sample # Draw the keypoint using the tried and true df2 # Other things should subsiquently align df2.draw_kpts2(np.array([(0, 0, ia11, ia21, ia22)]), ell_linewidth=4, ell_color=df2.DEEP_PINK, ell_alpha=1, arrow=True, rect=True) # Plot ellipse points _plotpts(ellipse_pts1, 0, df2.YELLOW, label='invV.dot(cicrle_pts.T).T') # Plot ellipse axis # !HELP! I DO NOT KNOW WHY I HAVE TO DIVIDE, SQUARE ROOT, AND NEGATE!!! l1, l2, v1, v2 = _2x2_eig(A_33) dx1, dy1 = (v1 / np.sqrt(l1)) dx2, dy2 = (v2 / np.sqrt(l2)) _plotarrow(0, 0, dx1, -dy1, color=df2.ORANGE, label='ellipse axis') _plotarrow(0, 0, dx2, -dy2, color=df2.ORANGE) # Plot ellipse orientation orient_axis = invV.dot(np.eye(2)) dx1, dx2, dy1, dy2 = orient_axis.flatten() _plotarrow(0, 0, dx1, dy1, color=df2.BLUE, label='ellipse rotation') _plotarrow(0, 0, dx2, dy2, color=df2.BLUE) df2.legend() df2.dark_background() df2.gca().invert_yaxis() return locals()