Beispiel #1
0
 def _distplot(dists, color, label, distkey, plot_type=plot_type):
     data = sorted(dists)
     ax = df2.gca()
     min_ = distkey2_min[distkey]
     max_ = distkey2_max[distkey]
     if plot_type == 'plot':
         df2.plot(data, color=color, label=label)
         #xticks = np.linspace(np.min(data), np.max(data), 3)
         #yticks = np.linspace(0, len(data), 5)
         #ax.set_xticks(xticks)
         #ax.set_yticks(yticks)
         ax.set_ylim(min_, max_)
         ax.set_xlim(0, len(dists))
         ax.set_ylabel('distance')
         ax.set_xlabel('matches indexes (sorted by distance)')
         df2.legend(loc='lower right')
     if plot_type == 'pdf':
         df2.plot_pdf(data, color=color, label=label)
         ax.set_ylabel('pr')
         ax.set_xlabel('distance')
         ax.set_xlim(min_, max_)
         df2.legend(loc='upper right')
     df2.dark_background(ax)
     df2.small_xticks(ax)
     df2.small_yticks(ax)
Beispiel #2
0
 def _distplot(dists, color, label, distkey, plot_type=plot_type):
     data = sorted(dists)
     ax = df2.gca()
     min_ = distkey2_min[distkey]
     max_ = distkey2_max[distkey]
     if plot_type == 'plot':
         df2.plot(data, color=color, label=label)
         #xticks = np.linspace(np.min(data), np.max(data), 3)
         #yticks = np.linspace(0, len(data), 5)
         #ax.set_xticks(xticks)
         #ax.set_yticks(yticks)
         ax.set_ylim(min_, max_)
         ax.set_xlim(0, len(dists))
         ax.set_ylabel('distance')
         ax.set_xlabel('matches indexes (sorted by distance)')
         df2.legend(loc='lower right')
     if plot_type == 'pdf':
         df2.plot_pdf(data, color=color, label=label)
         ax.set_ylabel('pr')
         ax.set_xlabel('distance')
         ax.set_xlim(min_, max_)
         df2.legend(loc='upper right')
     df2.dark_background(ax)
     df2.small_xticks(ax)
     df2.small_yticks(ax)
Beispiel #3
0
def plot_rank_histogram(allres, orgres_type):
    print('[viz] plotting %r rank histogram' % orgres_type)
    ranks = allres.__dict__[orgres_type].ranks
    label = 'P(rank | ' + orgres_type + ' match)'
    title = orgres_type + ' match rankings histogram\n' + allres.title_suffix
    df2.figure(fnum=FIGNUM, doclf=True, title=title)
    df2.draw_histpdf(ranks, label=label)  # FIXME
    df2.set_xlabel('ground truth ranks')
    df2.set_ylabel('frequency')
    df2.legend()
    __dump_or_browse(allres.hs, 'rankviz')
Beispiel #4
0
def plot_score_pdf(allres, orgres_type, colorx=0.0, variation_truncate=False):
    print('[viz] plotting ' + orgres_type + ' score pdf')
    title = orgres_type + ' match score frequencies\n' + allres.title_suffix
    scores = allres.__dict__[orgres_type].scores
    print('[viz] len(scores) = %r ' % (len(scores), ))
    label = 'P(score | %r)' % orgres_type
    df2.figure(fnum=FIGNUM, doclf=True, title=title)
    df2.draw_pdf(scores, label=label, colorx=colorx)
    if variation_truncate:
        df2.variation_trunctate(scores)
    #df2.variation_trunctate(false.scores)
    df2.set_xlabel('score')
    df2.set_ylabel('frequency')
    df2.legend()
    __dump_or_browse(allres.hs, 'scoreviz')
Beispiel #5
0
def in_depth_ellipse2x2(rchip, kp):
    #-----------------------
    # SETUP
    #-----------------------
    from hotspotter import draw_func2 as df2
    np.set_printoptions(precision=8)
    tau = 2 * np.pi
    df2.reset()
    df2.figure(9003, docla=True, doclf=True)
    ax = df2.gca()
    ax.invert_yaxis()

    def _plotpts(data, px, color=df2.BLUE, label=''):
        #df2.figure(9003, docla=True, pnum=(1, 1, px))
        df2.plot2(data.T[0], data.T[1], '.', '', color=color, label=label)
        df2.update()

    def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''):
        ax = df2.gca()
        arrowargs = dict(head_width=.5, length_includes_head=True, label=label)
        arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs)
        arrow.set_edgecolor(color)
        arrow.set_facecolor(color)
        ax.add_patch(arrow)
        df2.update()

    def _2x2_eig(M2x2):
        (evals, evecs) = np.linalg.eig(M2x2)
        l1, l2 = evals
        v1, v2 = evecs
        return l1, l2, v1, v2

    #-----------------------
    # INPUT
    #-----------------------
    # We will call perdoch's invA = invV
    print('--------------------------------')
    print('Let V = Perdoch.A')
    print('Let Z = Perdoch.E')
    print('--------------------------------')
    print('Input from Perdoch\'s detector: ')

    # We are given the keypoint in invA format
    (x, y, ia11, ia21, ia22), ia12 = kp, 0
    invV = np.array([[ia11, ia12], [ia21, ia22]])
    V = np.linalg.inv(invV)
    # <HACK>
    #invV = V / np.linalg.det(V)
    #V = np.linalg.inv(V)
    # </HACK>
    Z = (V.T).dot(V)

    print('invV is a transform from points on a unit-circle to the ellipse')
    helpers.horiz_print('invV = ', invV)
    print('--------------------------------')
    print('V is a transformation from points on the ellipse to a unit circle')
    helpers.horiz_print('V = ', V)
    print('--------------------------------')
    print('Points on a matrix satisfy (x).T.dot(Z).dot(x) = 1')
    print('where Z = (V.T).dot(V)')
    helpers.horiz_print('Z = ', Z)

    # Define points on a unit circle
    theta_list = np.linspace(0, tau, 50)
    cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list])

    # Transform those points to the ellipse using invV
    ellipse_pts1 = invV.dot(cicrle_pts.T).T

    # Transform those points to the ellipse using V
    ellipse_pts2 = V.dot(cicrle_pts.T).T

    #Lets check our assertion: (x_).T.dot(Z).dot(x_) = 1
    checks1 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts1]
    checks2 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts2]
    assert all([abs(1 - check) < 1E-11 for check in checks1])
    #assert all([abs(1 - check) < 1E-11 for check in checks2])
    print('... all of our plotted points satisfy this')

    #=======================
    # THE CONIC SECTION
    #=======================
    # All of this was from the Perdoch paper, now lets move into conic sections
    # We will use the notation from wikipedia
    # http://en.wikipedia.org/wiki/Conic_section
    # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

    #-----------------------
    # MATRIX REPRESENTATION
    #-----------------------
    # The matrix representation of a conic is:
    (A, B2, B2_, C) = Z.flatten()
    (D, E, F) = (0, 0, 1)
    B = B2 * 2
    assert B2 == B2_, 'matrix should by symmetric'
    print('--------------------------------')
    print('Now, using wikipedia\' matrix representation of a conic.')
    con = np.array((('    A', 'B / 2', 'D / 2'), ('B / 2', '    C', 'E / 2'),
                    ('D / 2', 'E / 2', '    F')))
    helpers.horiz_print('A matrix A_Q = ', con)

    # A_Q is our conic section (aka ellipse matrix)
    A_Q = np.array(((A, B / 2, D / 2), (B / 2, C, E / 2), (D / 2, E / 2, F)))

    helpers.horiz_print('A_Q = ', A_Q)

    #-----------------------
    # DEGENERATE CONICS
    #-----------------------
    print('----------------------------------')
    print('As long as det(A_Q) != it is not degenerate.')
    print('If the conic is not degenerate, we can use the 2x2 minor: A_33')
    print('det(A_Q) = %s' % str(np.linalg.det(A_Q)))
    assert np.linalg.det(A_Q) != 0, 'degenerate conic'
    A_33 = np.array(((A, B / 2), (B / 2, C)))
    helpers.horiz_print('A_33 = ', A_33)

    #-----------------------
    # CONIC CLASSIFICATION
    #-----------------------
    print('----------------------------------')
    print('The determinant of the minor classifies the type of conic it is')
    print('(det == 0): parabola, (det < 0): hyperbola, (det > 0): ellipse')
    print('det(A_33) = %s' % str(np.linalg.det(A_33)))
    assert np.linalg.det(A_33) > 0, 'conic is not an ellipse'
    print('... this is indeed an ellipse')

    #-----------------------
    # CONIC CENTER
    #-----------------------
    print('----------------------------------')
    print('the centers of the ellipse are obtained by: ')
    print('x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)')
    print('y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)')
    # Centers are obtained by solving for where the gradient of the quadratic
    # becomes 0. Without going through the derivation the calculation is...
    # These should be 0, 0 if we are at the origin, or our original x, y
    # coordinate specified by the keypoints. I'm doing the calculation just for
    # shits and giggles
    x_center = (B * E - (2 * C * D)) / (4 * A * C - B**2)
    y_center = (D * B - (2 * A * E)) / (4 * A * C - B**2)
    helpers.horiz_print('x_center = ', x_center)
    helpers.horiz_print('y_center = ', y_center)

    #-----------------------
    # MAJOR AND MINOR AXES
    #-----------------------
    # Now we are going to determine the major and minor axis
    # of this beast. It just the center augmented by the eigenvecs
    print('----------------------------------')

    # The angle between the major axis and our x axis is:
    l1, l2, v1, v2 = _2x2_eig(A_33)
    x_axis = np.array([1, 0])
    theta = np.arccos(x_axis.dot(v1))

    # The eccentricity is determined by:
    nu = 1
    numer = 2 * np.sqrt((A - C)**2 + B**2)
    denom = nu * (A + C) + np.sqrt((A - C)**2 + B**2)
    eccentricity = np.sqrt(numer / denom)

    from scipy.special import ellipeinc
    #-----------------------
    # DRAWING
    #-----------------------
    # Lets start off by drawing the ellipse that we are goign to work with
    # Create unit circle sample

    # Draw the keypoint using the tried and true df2
    # Other things should subsiquently align
    df2.draw_kpts2(np.array([(0, 0, ia11, ia21, ia22)]),
                   ell_linewidth=4,
                   ell_color=df2.DEEP_PINK,
                   ell_alpha=1,
                   arrow=True,
                   rect=True)

    # Plot ellipse points
    _plotpts(ellipse_pts1, 0, df2.YELLOW, label='invV.dot(cicrle_pts.T).T')

    # Plot ellipse axis
    # !HELP! I DO NOT KNOW WHY I HAVE TO DIVIDE, SQUARE ROOT, AND NEGATE!!!
    l1, l2, v1, v2 = _2x2_eig(A_33)
    dx1, dy1 = (v1 / np.sqrt(l1))
    dx2, dy2 = (v2 / np.sqrt(l2))
    _plotarrow(0, 0, dx1, -dy1, color=df2.ORANGE, label='ellipse axis')
    _plotarrow(0, 0, dx2, -dy2, color=df2.ORANGE)

    # Plot ellipse orientation
    orient_axis = invV.dot(np.eye(2))
    dx1, dx2, dy1, dy2 = orient_axis.flatten()
    _plotarrow(0, 0, dx1, dy1, color=df2.BLUE, label='ellipse rotation')
    _plotarrow(0, 0, dx2, dy2, color=df2.BLUE)

    df2.legend()
    df2.dark_background()
    df2.gca().invert_yaxis()
    return locals()
Beispiel #6
0
def in_depth_ellipse2x2(rchip, kp):
    #-----------------------
    # SETUP
    #-----------------------
    from hotspotter import draw_func2 as df2
    np.set_printoptions(precision=8)
    tau = 2 * np.pi
    df2.reset()
    df2.figure(9003, docla=True, doclf=True)
    ax = df2.gca()
    ax.invert_yaxis()

    def _plotpts(data, px, color=df2.BLUE, label=''):
        #df2.figure(9003, docla=True, pnum=(1, 1, px))
        df2.plot2(data.T[0], data.T[1], '.', '', color=color, label=label)
        df2.update()

    def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''):
        ax = df2.gca()
        arrowargs = dict(head_width=.5, length_includes_head=True, label=label)
        arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs)
        arrow.set_edgecolor(color)
        arrow.set_facecolor(color)
        ax.add_patch(arrow)
        df2.update()

    def _2x2_eig(M2x2):
        (evals, evecs) = np.linalg.eig(M2x2)
        l1, l2 = evals
        v1, v2 = evecs
        return l1, l2, v1, v2

    #-----------------------
    # INPUT
    #-----------------------
    # We will call perdoch's invA = invV
    print('--------------------------------')
    print('Let V = Perdoch.A')
    print('Let Z = Perdoch.E')
    print('--------------------------------')
    print('Input from Perdoch\'s detector: ')

    # We are given the keypoint in invA format
    (x, y, ia11, ia21, ia22), ia12 = kp, 0
    invV = np.array([[ia11, ia12],
                     [ia21, ia22]])
    V = np.linalg.inv(invV)
    # <HACK>
    #invV = V / np.linalg.det(V)
    #V = np.linalg.inv(V)
    # </HACK>
    Z = (V.T).dot(V)

    print('invV is a transform from points on a unit-circle to the ellipse')
    helpers.horiz_print('invV = ', invV)
    print('--------------------------------')
    print('V is a transformation from points on the ellipse to a unit circle')
    helpers.horiz_print('V = ', V)
    print('--------------------------------')
    print('Points on a matrix satisfy (x).T.dot(Z).dot(x) = 1')
    print('where Z = (V.T).dot(V)')
    helpers.horiz_print('Z = ', Z)

    # Define points on a unit circle
    theta_list = np.linspace(0, tau, 50)
    cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list])

    # Transform those points to the ellipse using invV
    ellipse_pts1 = invV.dot(cicrle_pts.T).T

    # Transform those points to the ellipse using V
    ellipse_pts2 = V.dot(cicrle_pts.T).T

    #Lets check our assertion: (x_).T.dot(Z).dot(x_) = 1
    checks1 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts1]
    checks2 = [x_.T.dot(Z).dot(x_) for x_ in ellipse_pts2]
    assert all([abs(1 - check) < 1E-11 for check in checks1])
    #assert all([abs(1 - check) < 1E-11 for check in checks2])
    print('... all of our plotted points satisfy this')

    #=======================
    # THE CONIC SECTION
    #=======================
    # All of this was from the Perdoch paper, now lets move into conic sections
    # We will use the notation from wikipedia
    # http://en.wikipedia.org/wiki/Conic_section
    # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

    #-----------------------
    # MATRIX REPRESENTATION
    #-----------------------
    # The matrix representation of a conic is:
    (A,  B2, B2_, C) = Z.flatten()
    (D, E, F) = (0, 0, 1)
    B = B2 * 2
    assert B2 == B2_, 'matrix should by symmetric'
    print('--------------------------------')
    print('Now, using wikipedia\' matrix representation of a conic.')
    con = np.array((('    A', 'B / 2', 'D / 2'),
                    ('B / 2', '    C', 'E / 2'),
                    ('D / 2', 'E / 2', '    F')))
    helpers.horiz_print('A matrix A_Q = ', con)

    # A_Q is our conic section (aka ellipse matrix)
    A_Q = np.array(((    A, B / 2, D / 2),
                    (B / 2,     C, E / 2),
                    (D / 2, E / 2,     F)))

    helpers.horiz_print('A_Q = ', A_Q)

    #-----------------------
    # DEGENERATE CONICS
    #-----------------------
    print('----------------------------------')
    print('As long as det(A_Q) != it is not degenerate.')
    print('If the conic is not degenerate, we can use the 2x2 minor: A_33')
    print('det(A_Q) = %s' % str(np.linalg.det(A_Q)))
    assert np.linalg.det(A_Q) != 0, 'degenerate conic'
    A_33 = np.array(((    A, B / 2),
                     (B / 2,     C)))
    helpers.horiz_print('A_33 = ', A_33)

    #-----------------------
    # CONIC CLASSIFICATION
    #-----------------------
    print('----------------------------------')
    print('The determinant of the minor classifies the type of conic it is')
    print('(det == 0): parabola, (det < 0): hyperbola, (det > 0): ellipse')
    print('det(A_33) = %s' % str(np.linalg.det(A_33)))
    assert np.linalg.det(A_33) > 0, 'conic is not an ellipse'
    print('... this is indeed an ellipse')

    #-----------------------
    # CONIC CENTER
    #-----------------------
    print('----------------------------------')
    print('the centers of the ellipse are obtained by: ')
    print('x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)')
    print('y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)')
    # Centers are obtained by solving for where the gradient of the quadratic
    # becomes 0. Without going through the derivation the calculation is...
    # These should be 0, 0 if we are at the origin, or our original x, y
    # coordinate specified by the keypoints. I'm doing the calculation just for
    # shits and giggles
    x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)
    y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)
    helpers.horiz_print('x_center = ', x_center)
    helpers.horiz_print('y_center = ', y_center)

    #-----------------------
    # MAJOR AND MINOR AXES
    #-----------------------
    # Now we are going to determine the major and minor axis
    # of this beast. It just the center augmented by the eigenvecs
    print('----------------------------------')

    # The angle between the major axis and our x axis is:
    l1, l2, v1, v2 = _2x2_eig(A_33)
    x_axis = np.array([1, 0])
    theta = np.arccos(x_axis.dot(v1))

    # The eccentricity is determined by:
    nu = 1
    numer  = 2 * np.sqrt((A - C) ** 2 + B ** 2)
    denom  = nu * (A + C) + np.sqrt((A - C) ** 2 + B ** 2)
    eccentricity = np.sqrt(numer / denom)

    from scipy.special import ellipeinc
    #-----------------------
    # DRAWING
    #-----------------------
    # Lets start off by drawing the ellipse that we are goign to work with
    # Create unit circle sample

    # Draw the keypoint using the tried and true df2
    # Other things should subsiquently align
    df2.draw_kpts2(np.array([(0, 0, ia11, ia21, ia22)]), ell_linewidth=4,
                   ell_color=df2.DEEP_PINK, ell_alpha=1, arrow=True, rect=True)

    # Plot ellipse points
    _plotpts(ellipse_pts1, 0, df2.YELLOW, label='invV.dot(cicrle_pts.T).T')

    # Plot ellipse axis
    # !HELP! I DO NOT KNOW WHY I HAVE TO DIVIDE, SQUARE ROOT, AND NEGATE!!!
    l1, l2, v1, v2 = _2x2_eig(A_33)
    dx1, dy1 = (v1 / np.sqrt(l1))
    dx2, dy2 = (v2 / np.sqrt(l2))
    _plotarrow(0, 0, dx1, -dy1, color=df2.ORANGE, label='ellipse axis')
    _plotarrow(0, 0, dx2, -dy2, color=df2.ORANGE)

    # Plot ellipse orientation
    orient_axis = invV.dot(np.eye(2))
    dx1, dx2, dy1, dy2 = orient_axis.flatten()
    _plotarrow(0, 0, dx1, dy1, color=df2.BLUE, label='ellipse rotation')
    _plotarrow(0, 0, dx2, dy2, color=df2.BLUE)

    df2.legend()
    df2.dark_background()
    df2.gca().invert_yaxis()
    return locals()