pickle.dump(vocab, open(config.save_vocab_path, 'wb'))
    pickle.dump(char_vocab, open(config.save_char_vocab_path, 'wb'))

    args, extra_args = argparser.parse_known_args()
    config = Configurable(args.config_file, extra_args)

    torch.set_num_threads(args.thread)
    config.use_cuda = False
    if gpu and args.use_cuda: config.use_cuda = True
    print("\nGPU using status: ", config.use_cuda)

    # print(config.use_cuda)

    model = ParserModel(vocab, config, vec)
    classifier_model = ClassifierModel(config)
    char_emb_model = CharEmbModel(char_vocab, config)

    if args.use_pretrain:
        model.load_state_dict(torch.load(config.load_model_path))
        classifier_model.load_state_dict(
            torch.load(config.load_classifier_model_path))
        char_emb_model.load_state_dict(torch.load(config.load_char_model_path))

        print("###Load pretrain parser ok.###")

    if config.use_cuda:
        torch.backends.cudnn.enabled = True
        model = model.cuda()
        classifier_model = classifier_model.cuda()
        char_emb_model = char_emb_model.cuda()
    print(model)
    config = Configurable(args.config_file, extra_args)

    torch.set_num_threads(args.thread)
    config.use_cuda = False
    if gpu and args.use_cuda: config.use_cuda = True
    print("\nGPU using status: ", config.use_cuda)

    # print(config.use_cuda)

    model = ParserModel(vocab, config, vec)
    if args.use_pretrain:
        model.load_state_dict(torch.load(config.load_model_path))
        print("###Load pretrain parser ok.###")

    classifier_model = ClassifierModel(config)
    char_emb_model = CharEmbModel(char_vocab, config)

    if config.use_cuda:
        torch.backends.cudnn.enabled = True
        model = model.cuda()
        classifier_model = classifier_model.cuda()
        char_emb_model = char_emb_model.cuda()
    print(model)
    print(classifier_model)
    print(char_emb_model)

    parser = BiaffineParser(model, vocab.ROOT)
    classifier = DomainClassifier(classifier_model)
    charEmbedding = CharEmb(char_emb_model)

    data = read_corpus(config.train_file, vocab)