def find_national_drugs():
    getAll = drugs.get_reports()
    returnVal = { }
    for year in range(2002, 2015, 1):
        itemDict = {}
        itemDict['Sums'] = { }
        itemDict['Sums']['Marijuana'] = 0
        itemDict['Sums']['Illicit Drugs'] = 0
        itemDict['Sums']['Alcohol'] = 0
        itemDict['Sums']['Population'] = 0
        itemDict['Rates'] = { }
        itemDict['Rates']['Marijuana'] = 0
        itemDict['Rates']['Illicit Drugs'] = 0
        itemDict['Rates']['Alcohol'] = 0
        returnVal[ str(year) ] = itemDict
    for item in getAll:
        itemDict = returnVal[ str(item['Year']) ]
        itemDict['Sums']['Marijuana'] += item['Totals']['Marijuana']['Used Past Year']['12-17']*10
        itemDict['Sums']['Illicit Drugs'] += item['Totals']['Illicit Drugs']['Dependence Past Year']['12-17']*10
        itemDict['Sums']['Alcohol'] += item['Totals']['Alcohol']['Dependence Past Year']['12-17']*10
        itemDict['Sums']['Population'] += item['Population']['12-17']
    for key in returnVal.keys():
        itemDict = returnVal[key]
        itemDict['Rates']['Marijuana'] = round( itemDict['Sums']['Marijuana'] * 10000.0 / itemDict['Sums']['Population'] ) / 100
        itemDict['Rates']['Illicit Drugs'] = round( itemDict['Sums']['Illicit Drugs'] * 10000.0 / itemDict['Sums']['Population'] ) / 100
        itemDict['Rates']['Alcohol'] = round( itemDict['Sums']['Alcohol'] * 10000.0 / itemDict['Sums']['Population'] ) / 100

    return returnVal
def find_state_drugs( code ):
    state = ""
    for stateName, cde in state_codes.items():
        if cde == code:
            state = stateName

    getAll = drugs.get_reports()
    returnVal = { }
    for year in range(2002, 2015, 1):
        itemDict = {}
        returnVal[ str(year) ] = itemDict
    for item in getAll:
        if item['State'] == state:
            itemDict = returnVal[ str(item['Year']) ]
            itemDict['Rates'] = {}
            itemDict['Rates']['Marijuana'] = item['Rates']['Marijuana']['Used Past Year']['12-17']
            itemDict['Rates']['Illicit Drugs'] = item['Rates']['Illicit Drugs']['Dependence Past Year']['12-17']
            itemDict['Rates']['Alcohol'] = item['Rates']['Alcohol']['Dependence Past Year']['12-17']
    return returnVal
    'Washington': 'WA',
    'North Carolina': 'NC',
    'Maine': 'ME',
    'New York': 'NY',
    'Montana': 'MT',
    'Nevada': 'NV',
    'Delaware': 'DE',
    'District of Columbia': 'DC'
}

def get_state_codes():
    return state_codes


#---------------------------DRUG STUFF------------------------------------
states_drugs = drugs.get_reports()

def convert_drugs():
    overall = {}
    for state in states_drugs:
        name = state_codes[state['State']]
        if not name in overall.keys():
            overall[name] = {}
        weighted_data = [state['Totals']['Marijuana']['Used Past Year']['12-17']*1000,
        state['Totals']['Pain Relievers Abuse Past Year']['12-17']*1000,
        state['Totals']['Illicit Drugs']['Dependence Past Year']['12-17']*1000,
        state['Totals']['Alcohol']['Dependence Past Year']['12-17']*1000]
        overall[name][str(state['Year'])] = weighted_data
    return overall

Beispiel #4
0
import drugs
import matplotlib.pyplot as plt
import math
import numpy as np

list_of_report = drugs.get_reports()


def makeAvg(list):
    sum = 0
    for x in range(len(list)):
        sum += list[x]
        average = sum / len(list)
    return average


mari = []
ageRange26mari = []
for n in list_of_report:
    ageRange26mari.append(n["Totals"]["Marijuana"]["Used Past Month"]["26+"])
avg1 = makeAvg(ageRange26mari)
mari.append(avg1)

ageRange1825mari = []
for n in list_of_report:
    ageRange1825mari.append(
        n["Totals"]["Marijuana"]["Used Past Month"]["18-25"])
avg2 = makeAvg(ageRange1825mari)
mari.append(avg2)

ageRange1217mari = []
Beispiel #5
0
import drugs
import matplotlib.pyplot as plt
plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt

listofreports = drugs.get_reports()
# based on age group, how many people have been dependent on alcohol in the past year?

for f in listofreports:
    oldest_group = f["Totals"]["Alcohol"]["Dependence Past Year"]["26+"]
    mid_group = f["Totals"]["Alcohol"]["Dependence Past Year"]["18-25"]
    young_group = f["Totals"]["Alcohol"]["Dependence Past Year"]["12-17"]

objects = ['12-17 years old', '18-25 years old', '26+ years old']
x_pos = np.arange(len(objects))
values = [young_group, mid_group, oldest_group]
clr = '#F09D00'
labels = ['99', '400', '1200']

for i in range(len(x_pos)):
    plt.text(x=x_pos[i] - 0.1, y=values[i], s=labels[i], size=9)

plt.bar(x_pos, values, align='center', color=clr)
plt.xticks(x_pos, objects)
plt.ylabel('# of people (in thousands)')
plt.xlabel('age group')
plt.title('Alcoholism in the Past Year')
plt.show()
from course import corgis

import drugs
data = drugs.get_reports()
data = corgis.data2frame(data)
data.to_csv('drugs.csv', index=False)