Beispiel #1
0
def test_cube():
    XX = []
    size = 10
    for i in range(0, size):
        for j in range(0, size):
            for k in range(0, size):
                XX.append([i, j, k])
    XX = np.array(XX)
    # for i, x in enumerate(XX):
    #     print (i, x)
    dr = DRUHG(algorithm='slow', max_ranking=200, verbose=False)
    dr.fit(XX)
    s = 2 * len(XX) - 2
    print(dr.mst_)
    # assert (0==1)
    labels = dr.labels_
    n_clusters = len(set(labels)) - int(-1 in labels)
    print('n_clusters', n_clusters)
    print('labels', labels)
    assert (n_clusters == 1 + 6)
    # labels = dr.relabel(limit1=1)
    labels = dr.relabel(limit1=1, limit2=len(XX))
    print('out')
    n_clusters = len(set(labels)) - int(-1 in labels)
    print('n_clusters2', n_clusters)
    print('labels2', labels)
    assert (n_clusters == 1 + 6 + 12)
Beispiel #2
0
def test_iris():
    iris = datasets.load_iris()
    XX = iris['data']
    # print (XX, type(XX))
    dr = DRUHG(max_ranking=50, verbose=False)
    dr.fit(XX)
    labels = dr.labels_
    ari = adjusted_rand_score(iris['target'], labels)
    print('iris ari', ari)
    assert (ari >= 0.50)
    # breaking biggest cluster
    labels = dr.relabel(limit1=0, limit2=int(len(XX) / 2), fix_outliers=1)
    ari = adjusted_rand_score(iris['target'], labels)
    print('iris ari', ari)
    assert (ari >= 0.85)