print('QOT Distribution - Object variables description')
print(data.describe(include='object'))
data.describe(include='object').to_csv(
    graphsDir + 'QOT Distribution - Object variables description.csv')
print()

print('Object variables values description')
symbolic_vars = data.select_dtypes(include='object').columns
for v in symbolic_vars:
    print(v, data[v].unique())
print()

print('QOT Distribution (Object) - Histogram')
rows, cols = (2, 3)
fig, axs = plt.subplots(rows,
                        cols,
                        figsize=(cols * ds.HEIGHT, rows * ds.HEIGHT),
                        squeeze=False)
i, j = 0, 0
for n in range(6):
    counts = data[symbolic_vars[n]].value_counts()
    ds.bar_chart(counts.index.to_list(),
                 counts.values,
                 ax=axs[i, j],
                 title='Histogram for %s' % symbolic_vars[n],
                 xlabel=symbolic_vars[n],
                 ylabel='nr records')
    i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
plt.suptitle('QOT Distribution (Object) - Histogram')
plt.savefig(graphsDir + 'QOT Distribution (Object) - Histogram')
Beispiel #2
0
                             f'DBSCAN metric={METRICS[n]} eps={distances[n]:.2f} k={k}', ax=axs[i,j])
        else:
            print(k)
            mse.append(0)
            mae.append(0)
            sc.append(0)
            db.append(0)
        i, j = (i + 1, 0) if (n+1) % cols == 0 else (i, j + 1)
    plt.suptitle('QOT Clustering - Metric (Density-based) after PCA')
    plt.savefig(subDir + 'QOT Clustering - Metric (Density-based) after PCA')



    print('QOT Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.bar_chart(METRICS, mse, title='DBSCAN MSE', xlabel='metric', ylabel='MSE', ax=ax[0, 0])
    ds.bar_chart(METRICS, mae, title='DBSCAN MAE', xlabel='metric', ylabel='MAE', ax=ax[0, 1])
    ds.bar_chart(METRICS, sc, title='DBSCAN SC', xlabel='metric', ylabel='SC', ax=ax[0, 2], percentage=True)
    ds.bar_chart(METRICS, db, title='DBSCAN DB', xlabel='metric', ylabel='DB', ax=ax[0, 3])
    plt.suptitle('QOT Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(subDir + 'QOT Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA')



    print('QOT Clustering - Hierarchical after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(N_CLUSTERS))
    _, axs = plt.subplots(rows, cols, figsize=(cols*5, rows*5), squeeze=False)
        accuracy = 0
        for clf in estimators:
            xvalues.append(clf)
            for trn_X, trn_y, tst_X, tst_y in zip(trn_x_lst, trn_y_lst,
                                                  tst_x_lst, tst_y_lst):
                estimators[clf].fit(trn_X, trn_y)
                prd_tst = estimators[clf].predict(tst_X)

                accuracy += metrics.accuracy_score(tst_y, prd_tst)

            yvalues.append(accuracy / n_splits)

        plt.figure(figsize=(7, 7))
        ds.bar_chart(xvalues,
                     yvalues,
                     title='Comparison of Naive Bayes Models',
                     ylabel='accuracy',
                     percentage=True)
        plt.suptitle(subDir + 'HFCR Naive Bayes - ' + key +
                     ' - Comparison of Naive Bayes Models')
        plt.savefig(subDir + 'HFCR Naive Bayes - ' + key +
                    ' - Comparison of Naive Bayes Models')

        if (offset == 1):
            break
        if (last_accuracy > best_accuracy and best_accuracy != -1):
            best_accuracy = last_accuracy
            last_accuracy = -1
            count += offset
            offset -= 1
        elif (best_accuracy == -1):
import os

from pandas.plotting import register_matplotlib_converters

graphsDir = './Results/Dimensionality/'
if not os.path.exists(graphsDir):
    os.makedirs(graphsDir)

register_matplotlib_converters()
data = pd.read_csv('../Dataset/heart_failure_clinical_records_dataset.csv')
print(data.shape)

plt.figure(figsize=(4, 2))
values = {'nr records': data.shape[0], 'nr variables': data.shape[1]}
ds.bar_chart(values.keys(),
             values.values(),
             edgecolor="teal",
             color="turquoise")
plt.title('Nr of records vs nr of variables', color="teal")
plt.savefig(graphsDir + 'HFCR Dimensionality - NrRecords.png')

print(data.dtypes)
data.dtypes.to_csv(graphsDir + 'HFCR Dimensionality - Types of variables.csv')

cat_vars = data.select_dtypes(include='object')
data[cat_vars.columns] = data.select_dtypes(
    ['object']).apply(lambda x: x.astype('category'))
print(data.dtypes)
data.dtypes.to_csv(
    graphsDir + 'HFCR Dimensionality - Types of variables - Improvement.csv')

plt.figure(figsize=(20, 3))
Beispiel #5
0
def pca_function(data, subDir):
    data.pop('DEATH_EVENT')

    variables = data.columns.values
    eixo_x = 0
    eixo_y = 4
    eixo_z = 7

    plt.figure()
    plt.xlabel(variables[eixo_y])
    plt.ylabel(variables[eixo_z])
    plt.scatter(data.iloc[:, eixo_y], data.iloc[:, eixo_z])

    print('HFCR Feature Extraction - PCA')
    mean = (data.mean(axis=0)).tolist()
    centered_data = data - mean
    cov_mtx = centered_data.cov()
    eigvals, eigvecs = np.linalg.eig(cov_mtx)

    pca = PCA()
    pca.fit(centered_data)
    PC = pca.components_
    var = pca.explained_variance_

    # PLOT EXPLAINED VARIANCE RATIO
    fig = plt.figure(figsize=(4, 4))
    plt.title('Explained variance ratio')
    plt.xlabel('PC')
    plt.ylabel('ratio')
    x_values = [str(i) for i in range(1, len(pca.components_) + 1)]
    bwidth = 0.5
    ax = plt.gca()
    ax.set_xticklabels(x_values)
    ax.set_ylim(0.0, 1.0)
    ax.bar(x_values, pca.explained_variance_ratio_, width=bwidth)
    ax.plot(pca.explained_variance_ratio_)
    for i, v in enumerate(pca.explained_variance_ratio_):
        ax.text(i, v + 0.05, f'{v*100:.1f}', ha='center', fontweight='bold')
    plt.suptitle('HFCR Feature Extraction - PCA')
    plt.savefig(subDir + 'HFCR Feature Extraction - PCA')

    print('HFCR Feature Extraction - PCA 2')
    transf = pca.transform(data)

    _, axs = plt.subplots(1, 2, figsize=(2 * 5, 1 * 5), squeeze=False)
    axs[0, 0].set_xlabel(variables[eixo_y])
    axs[0, 0].set_ylabel(variables[eixo_z])
    axs[0, 0].scatter(data.iloc[:, eixo_y], data.iloc[:, eixo_z])

    axs[0, 1].set_xlabel('PC1')
    axs[0, 1].set_ylabel('PC2')
    axs[0, 1].scatter(transf[:, 0], transf[:, 1])
    plt.suptitle('HFCR Feature Extraction - PCA')
    plt.savefig(subDir + 'HFCR Feature Extraction - PCA')

    print('Clustering after PCA')
    data = pd.DataFrame(transf[:, :2], columns=['PC1', 'PC2'])
    eixo_x = 0
    eixo_y = 1

    N_CLUSTERS = [2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
    rows, cols = ds.choose_grid(len(N_CLUSTERS))

    print('HFCR Clustering - K-Means after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = KMeans(n_clusters=k)
        estimator.fit(data)
        mse.append(estimator.inertia_)
        mae.append(
            ds.compute_mae(data.values, estimator.labels_,
                           estimator.cluster_centers_))
        sc.append(silhouette_score(data, estimator.labels_))
        db.append(davies_bouldin_score(data, estimator.labels_))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         estimator.labels_.astype(float),
                         estimator.cluster_centers_,
                         k,
                         f'KMeans k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - K-Means after PCA')
    plt.savefig(subDir + 'HFCR Clustering - K-Means after PCA')

    print(
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='KMeans MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='KMeans MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='KMeans SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='KMeans DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(
        subDir +
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')

    print('HFCR Clustering - Expectation-Maximization after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = GaussianMixture(n_components=k)
        estimator.fit(data)
        labels = estimator.predict(data)
        mse.append(ds.compute_mse(data.values, labels, estimator.means_))
        mae.append(ds.compute_mae(data.values, labels, estimator.means_))
        sc.append(silhouette_score(data, labels))
        db.append(davies_bouldin_score(data, labels))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         labels.astype(float),
                         estimator.means_,
                         k,
                         f'EM k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Expectation-Maximization after PCA')
    plt.savefig(subDir +
                'HFCR Clustering - Expectation-Maximization after PCA')

    print(
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='EM MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='EM MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='EM SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='EM DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - EPS (Density-based) after PCA')
    EPS = [2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(EPS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(EPS)):
        estimator = DBSCAN(eps=EPS[n], min_samples=2)
        estimator.fit(data)
        labels = estimator.labels_
        k = len(set(labels)) - (1 if -1 in labels else 0)
        if k > 1:
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(data,
                             eixo_x,
                             eixo_y,
                             labels.astype(float),
                             estimator.components_,
                             k,
                             f'DBSCAN eps={EPS[n]} k={k}',
                             ax=axs[i, j])
            i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
        else:
            mse.append(0)
            mae.append(0)
            sc.append(0)
            db.append(0)
    plt.suptitle('HFCR Clustering - EPS (Density-based) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - EPS (Density-based) after PCA')

    print(
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(EPS,
                 mse,
                 title='DBSCAN MSE',
                 xlabel='eps',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(EPS,
                 mae,
                 title='DBSCAN MAE',
                 xlabel='eps',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(EPS,
                 sc,
                 title='DBSCAN SC',
                 xlabel='eps',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(EPS,
                 db,
                 title='DBSCAN DB',
                 xlabel='eps',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - Metric (Density-based) after PCA')
    METRICS = ['euclidean', 'cityblock', 'chebyshev', 'cosine', 'jaccard']
    distances = []
    for m in METRICS:
        dist = np.mean(np.mean(squareform(pdist(data.values, metric=m))))
        distances.append(dist)

    print('AVG distances among records', distances)
    distances[0] = 80
    distances[1] = 50
    distances[2] = 80
    distances[3] = 0.0005
    distances[4] = 0.0009
    print('CHOSEN EPS', distances)

    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(METRICS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(METRICS)):
        estimator = DBSCAN(eps=distances[n], min_samples=2, metric=METRICS[n])
        estimator.fit(data)
        labels = estimator.labels_
        k = len(set(labels)) - (1 if -1 in labels else 0)
        if k > 1:
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(
                data,
                eixo_x,
                eixo_y,
                labels.astype(float),
                estimator.components_,
                k,
                f'DBSCAN metric={METRICS[n]} eps={distances[n]:.2f} k={k}',
                ax=axs[i, j])
        else:
            print(k)
            mse.append(0)
            mae.append(0)
            sc.append(0)
            db.append(0)
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Metric (Density-based) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Metric (Density-based) after PCA')

    print(
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.bar_chart(METRICS,
                 mse,
                 title='DBSCAN MSE',
                 xlabel='metric',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.bar_chart(METRICS,
                 mae,
                 title='DBSCAN MAE',
                 xlabel='metric',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.bar_chart(METRICS,
                 sc,
                 title='DBSCAN SC',
                 xlabel='metric',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.bar_chart(METRICS,
                 db,
                 title='DBSCAN DB',
                 xlabel='metric',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - Hierarchical after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(N_CLUSTERS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = AgglomerativeClustering(n_clusters=k)
        estimator.fit(data)
        labels = estimator.labels_
        centers = ds.compute_centroids(data, labels)
        mse.append(ds.compute_mse(data.values, labels, centers))
        mae.append(ds.compute_mae(data.values, labels, centers))
        sc.append(silhouette_score(data, labels))
        db.append(davies_bouldin_score(data, labels))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         labels,
                         centers,
                         k,
                         f'Hierarchical k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Hierarchical after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Hierarchical after PCA')

    print('HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='Hierarchical MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='Hierarchical MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='Hierarchical SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='Hierarchical DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(
        subDir +
        'HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')

    print('HFCR Clustering - Metric (Hierarchical) after PCA')
    METRICS = ['euclidean', 'cityblock', 'chebyshev', 'cosine', 'jaccard']
    LINKS = ['complete', 'average']
    k = 3
    values_mse = {}
    values_mae = {}
    values_sc = {}
    values_db = {}
    rows = len(METRICS)
    cols = len(LINKS)
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    for i in range(len(METRICS)):
        mse: list = []
        mae: list = []
        sc: list = []
        db: list = []
        m = METRICS[i]
        for j in range(len(LINKS)):
            link = LINKS[j]
            estimator = AgglomerativeClustering(n_clusters=k,
                                                linkage=link,
                                                affinity=m)
            estimator.fit(data)
            labels = estimator.labels_
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(data,
                             eixo_x,
                             eixo_y,
                             labels,
                             centers,
                             k,
                             f'Hierarchical k={k} metric={m} link={link}',
                             ax=axs[i, j])
        values_mse[m] = mse
        values_mae[m] = mae
        values_sc[m] = sc
        values_db[m] = db
    plt.suptitle('HFCR Clustering - Metric (Hierarchical) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Metric (Hierarchical) after PCA')

    print(
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )
    _, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.multiple_bar_chart(LINKS,
                          values_mse,
                          title=f'Hierarchical MSE',
                          xlabel='metric',
                          ylabel='MSE',
                          ax=ax[0, 0])
    ds.multiple_bar_chart(LINKS,
                          values_mae,
                          title=f'Hierarchical MAE',
                          xlabel='metric',
                          ylabel='MAE',
                          ax=ax[0, 1])
    ds.multiple_bar_chart(LINKS,
                          values_sc,
                          title=f'Hierarchical SC',
                          xlabel='metric',
                          ylabel='SC',
                          ax=ax[0, 2],
                          percentage=True)
    ds.multiple_bar_chart(LINKS,
                          values_db,
                          title=f'Hierarchical DB',
                          xlabel='metric',
                          ylabel='DB',
                          ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )

    plt.close("all")
    plt.clf()