Beispiel #1
0
 def test_some_sequences(self):
     data = np.load('dp_solver.npy', allow_pickle=True)[:100]
     problem = load_problem(T=6)
     for i in data:
         d = i[0]
         seq = i[1:].astype(int)
         solver = solve_sequence(problem=problem, seq=seq)
         self.assertTrue(solver.result.feasible)
         self.assertAlmostEqual(d, solver.result.distance)
Beispiel #2
0
def repopulate_queue(Q, solutions):
    rand = np.random.permutation(len(solutions))
    old_pop = [solutions[rand[i]] for i in range(10)]
    problem = load_problem()
    for s in old_pop:
        if s:
            solver = solve_sequence(problem, s[-1])
            if solver.feasible:
                res = sliding_window(2,
                                     1,
                                     solver,
                                     return_first=False,
                                     restrict_available=False)
                if res.feasible:
                    Q.append(res)
    def test_distance(self):
        # np random seed = 10
        data = np.load('level_order_solver.npy', allow_pickle=True)
        problem = load_problem(T=6)
        truncation_args = {'limit': 1000, 'method': "distance"}
        optimizer = HeuristicTreeSolver(problem=problem,
                                        max_height=10,
                                        truncation_args=truncation_args)
        results = optimizer.solve()

        for i, j in enumerate(data):
            d = j[0]
            seq = j[1:][0]
            solver = results['solvers'][i]

            self.assertTrue(solver.result.feasible)
            self.assertAlmostEqual(d, solver.result.distance)
            self.assertEqual(seq, solver.result.seq)
Beispiel #4
0
            res = solve(1, problem)
        else:
            S = transition(pop)
            if S is not None:
                res = solve(n_ships, problem, sampling=S)
            else:
                break

        results.append(res.opt.data["solver"][0])
        _X, _F, pop = res.X, res.F[0], res.pop

        # prepare for the next iteration
        I, X, F = pop.get("feasible", "X", "F")

        if verbose:
            print(n_ships, _F, _X.tolist(), res.algorithm.n_gen, len(I))

        if len(I) == 0:
            break

        pop = pop[I[:, 0]]
        n_ships += 1

    return {"solvers": results}


if __name__ == "__main__":
    np.random.seed(1)
    res = solve_level_ga(load_problem(6), verbose=True)

    print(res['solvers'])
Beispiel #5
0
            Q, bd, bs = self._next(current=current, Q=Q, depth=depth)
            if bd <= best_distance:
                best_distance = bd
                best_solver = bs
                self.current_best = bs
            # ------------------------------------------------------------------------------------

        result = {}
        result["results"] = self.best_distances
        result["solvers"] = self.best_solvers
        result["selected"] = selected
        return result


if __name__ == "__main__":
    # Create sequence solver object
    P = load_problem(T=6)

    truncation_args = {'limit': 1000, 'method': "distance"}
    SeqSolver = HeuristicTreeSolver(problem=P,
                                    max_depth=10,
                                    truncation_args=truncation_args)

    # truncation_args = {'limit': 1000, 'method': "decomposition", 'w': 0.306}

    start = time.time()

    result = SeqSolver.solve()
    end = time.time()
    print(f"{end - start}")
Beispiel #6
0
def sliding_window(insert, remove, S, return_first=False, restrict_available=False):
    """

    :param insert: Number of ships to expand by
    :param remove: Number of ships to remove
    :param S: DPSolver instance
    :return:
    """
    success = 0
    fail = 0
    best_dist = 1e10
    best_solver = None
    # Algorithm works on gaps between ships not ships themselves, hence remove += 1
    remove += 1
    problem = load_problem()

    if isinstance(S, list):
        _solver = solve_sequence(problem=problem, seq=S)
    elif isinstance(S, DPSolver):
        _solver = copy.copy(S)
        _solver.get_result()
    else:
        print("FAIL SLIDING WINDOW")
        return
    sequence, schedule, distances = _solver.seq[:], _solver.result.schedule[:], [min(s.distances) for s in _solver.states]

    for i in range(len(sequence) - remove):
        window = sequence[i+1:i + remove]

        start = min(S.states[i].schedule)  # Minimum feasible available time from the ship states before the window
        end = problem.get_ship(window[-1]).times[1]  # Maximum available time for the ship in WA following the window

        avail = problem.ships_in_working_area(start=start, end=end)
        avail = set(avail) - set(sequence[:i+1] + sequence[i + remove:])
        if 0 in avail:
            avail.remove(0)

        sub_seq = list(itertools.permutations(avail, insert))
        if restrict_available:
            sub_seq = [s for s in sub_seq if len(set(sequence[i + 1:i + remove]) - set(s)) == 0]

        candidates = []  # Candidate solutions for full evaluation
        for ship in sub_seq:
            solver = copy.copy(_solver)
            solver.get_result()
            # Update the solver to the correct transition point
            while len(solver.seq) != len(sequence[:i+1]):
                solver.pop_state()

            # Evaluate the transition with the new permutation
            skip = False
            for l, j in enumerate(ship):
                b = solver.next(j)
                new_sched = solver.states[-1].schedule
                new_dist = min(solver.states[-1].distances) if len(solver.states[-1].distances) else 1e6
                # If the new schedule has less possible transitions or the new minimum distance is greate
                if len(new_sched) < len(schedule) or new_dist > distances[i+1+l]:
                    skip = True
                    break
            if skip:  # Move to next permutation
                fail += 1
                continue
            else:  # Update candidate permutations based on distance
                success += 1
                heapq.heappush(candidates, (min(solver.states[-1].distances), copy.copy(solver)))

        # Evaluate all candidate solutions
        for c in range(len(candidates)):
            d, sver = heapq.heappop(candidates)
            for s in sequence[i + remove:]:
                sver.next(s)

            result = sver.get_result()
            if result.feasible:
                if return_first:
                    return sver

                if result.distance < best_dist:
                    best_dist = result.distance
                    best_solver = sver
    return best_solver
Beispiel #7
0
                intermediate_results = sorted(intermediate_results, key=lambda x: x.dist)
                solvers[length] = intermediate_results[0]
                solver = solvers[length]




if __name__ == "__main__":
    from dsp.Problem import Problem, load_problem
    from dsp.Solver import DPSolver
    from dsp.HTSolver import HeuristicTreeSolver
    import time
    import pprint as pp

    # Create sequence solver object
    P = load_problem()
    truncation_args = {'limit': 100, 'method': "distance"}
    # ALPHA = set(P.ships_in_working_area())
    # SeqSolver = SequenceSolver(problem=P, height_limit=5)
    # result = SeqSolver.sequence_search(available=ALPHA, truncation_args=truncation_args)
    sol = solve_sequence(problem=P, seq=[0, 32, 30, 63, 12, 0])
    # sol2 = solve_sequence(problem=P, seq=[0, 32, 30, 63, 12, 0])
    sol2 = solve_sequence(problem=P, seq=[0, 8, 5, 30, 63, 12, 0])

    # start = time.time()
    # result = old_sliding_window(1, 1, sol)
    # end = time.time()
    # print(f"Old Result 2 Time: {end-start}")
    # print(f"Old Result: {result}")
    #
    # start = time.time()