Beispiel #1
0
def get_tile_slots():
    LM = 0.5  # half tile
    # tile_offset
    to = 0.20
    # tile_curb
    tc = 0.05

    positions = {
        0: (+to, +tc),
        1: (+tc, +to),
        2: (-tc, +to),
        3: (-to, +tc),
        4: (-to, -tc),
        5: (-tc, -to),
        6: (+tc, -to),
        7: (+to, -tc),
    }

    po = PlacedObject()
    for i, (x, y) in positions.items():
        name = str(i)
        # if name in self.children:
        #     continue

        sl = SignSlot()
        # theta = np.deg2rad(theta_deg)
        theta = 0
        t = SE2Transform((-LM + x, -LM + y), theta)
        # noinspection PyTypeChecker
        po.set_object(name, sl, ground_truth=t)
    return po
def m1():
    outdir = get_comptests_output_dir()
    gm = load_map("udem1")

    # dw = DuckietownWorld()
    # for map_name, tm in gym_maps.items():
    #     DW.root.set_object(map_name, tm)

    root = PlacedObject()

    world = PlacedObject()
    root.set_object("world", world)
    origin = SE2Transform([1, 10], np.deg2rad(10))
    world.set_object("tile_map",
                     gm,
                     ground_truth=Constant[SE2Transform](origin))

    # d = dw.as_json_dict()
    # print(json.dumps(d, indent=4))
    # print(yaml.safe_dump(d, default_flow_style=False))
    #

    G = get_meausurements_graph(root)
    fn = os.path.join(outdir, "out1.pdf")
    plot_measurement_graph(root, G, fn)
Beispiel #3
0
def create_lane_highlight(poses_sequence: SampledSequence, dw):
    def mapi(v):
        if isinstance(v, SE2Transform):
            return v.as_SE2()
        else:
            return v

    poses_sequence = poses_sequence.transform_values(mapi, np.ndarray)

    lane_pose_results = poses_sequence.transform_values(
        GetClosestLane(dw), object)

    visualization = PlacedObject()
    dw.set_object("visualization",
                  visualization,
                  ground_truth=SE2Transform.identity())
    for i, (timestamp, name2pose) in enumerate(lane_pose_results):
        for name, lane_pose_result in name2pose.items():
            assert isinstance(lane_pose_result, GetLanePoseResult)
            lane_segment = lane_pose_result.lane_segment
            rt = lane_pose_result.lane_segment_transform
            s = SampledSequence[Transform]([timestamp], [rt])
            visualization.set_object("ls%s-%s-lane" % (i, name),
                                     lane_segment,
                                     ground_truth=s)
            p = SampledSequence[Transform]([timestamp],
                                           [lane_pose_result.center_point])
            visualization.set_object("ls%s-%s-anchor" % (i, name),
                                     Anchor(),
                                     ground_truth=p)

    return lane_pose_results
def wb2():
    root = PlacedObject()

    for map_name in list_maps():
        tm = load_map(map_name)
        root.set_object(map_name, tm)

    d = root.as_json_dict()
    # print(json.dumps(d, indent=4))
    # print(yaml.safe_dump(d, default_flow_style=False))

    # print('------')
    r1 = Serializable.from_json_dict(d)
    d1 = r1.as_json_dict()
def wb1():
    outdir = get_comptests_output_dir()
    root = PlacedObject()
    tile_map = create_map(H=3, W=3)

    world = PlacedObject()
    root.set_object('world', world)

    placement = Constant[SE2Transform](SE2Transform.identity())

    world.set_object('map1', tile_map, ground_truth=placement)

    ego = PlacedObject()
    world_coordinates = Constant[SE2Transform](SE2Transform([0, 0], 0))

    world.set_object('ego', ego, ground_truth=world_coordinates)

    d = root.as_json_dict()
    # print(json.dumps(DW.root.as_json_dict(), indent=4))
    # print(yaml.safe_dump(d, default_flow_style=False))
    # print('------')
    r1 = Serializable.from_json_dict(d)
    # print('read: %s' % r1)
    d1 = r1.as_json_dict()
def get_skeleton_graph(po):
    """ Returns a graph with the lane segments of the map """

    # Get all the LaneSegments

    root = PlacedObject()

    class MeetingPoint(object):
        def __init__(self):
            self.point = None
            self.incoming = set()
            self.outcoming = set()

        def __repr__(self):
            return 'MP(%d %d | %s, %s)' % (len(
                self.incoming), len(
                    self.outcoming), self.incoming, self.outcoming)

    def discretize(tran):
        def D(x):
            return np.round(x, decimals=2)

        p, theta = geo.translation_angle_from_SE2(tran.as_SE2())
        return D(p[0]), D(p[1]), D(np.cos(theta)), D(np.sin(theta))

    meeting_points = defaultdict(MeetingPoint)

    for i, it in enumerate(iterate_by_class(po, LaneSegment)):
        lane_segment = it.object
        # lane_segment_fqn = it.fqn
        assert isinstance(lane_segment, LaneSegment), lane_segment
        absolute_pose = it.transform_sequence.asmatrix2d()

        lane_segment_transformed = transform_lane_segment(
            lane_segment, absolute_pose)

        identity = SE2Transform.identity()
        name = 'ls%03d' % i
        root.set_object(name, lane_segment_transformed, ground_truth=identity)

        p0 = discretize(lane_segment_transformed.control_points[0])
        p1 = discretize(lane_segment_transformed.control_points[-1])

        meeting_points[p0].point = lane_segment_transformed.control_points[0]
        meeting_points[p0].outcoming.add(name)
        meeting_points[p1].point = lane_segment_transformed.control_points[-1]
        meeting_points[p1].incoming.add(name)

    for k, mp in meeting_points.items():
        if (len(mp.incoming) == 0) or (len(mp.outcoming) == 0):
            msg = 'Completeness assumption violated at point %s: %s' % (k, mp)
            raise Exception(msg)

    # compress the lanes which are contiguous

    aliases = {}

    created = {}

    def resolve_alias(x):
        return x if x not in aliases else resolve_alias(aliases[x])

    for k, mp in list(meeting_points.items()):
        # continue
        if not (len(mp.incoming) == 1 and len(mp.outcoming) == 1):
            continue

        # not necessary anymore
        meeting_points.pop(k)
        lin_name = list(mp.incoming)[0]
        lout_name = list(mp.outcoming)[0]

        lin_name = resolve_alias(lin_name)
        lout_name = resolve_alias(lout_name)

        # print(' -> %s and %s meet at %s' % (lin_name, lout_name, mp))
        # print('%s and %s meet at %s' % (lin_name, lout_name, k))

        def get(it):
            if it in root.children:
                return root.children[it]
            else:
                return created[it]

        lin = get(lin_name)
        lout = get(lout_name)

        # name = 'alias%s' % (len(aliases))
        # name = '%s-%s' % (lin_name, lout_name)
        name = 'L%d' % (len(created))
        width = lin.width

        control_points = lin.control_points + lout.control_points[1:]
        ls = LaneSegment(width=width, control_points=control_points)
        created[name] = ls

        aliases[lin_name] = name
        aliases[lout_name] = name
        # print('new alias %s' % name)
    #
    # print('created: %s' % list(created))
    # print('aliases: %s' % aliases)
    root2 = PlacedObject()
    for k, v in created.items():
        if not k in aliases:
            root2.set_object(k, v, ground_truth=SE2Transform.identity())

    for k, v in root.children.items():
        if not k in aliases:
            root2.set_object(k, v, ground_truth=SE2Transform.identity())

    import networkx as nx
    G = nx.MultiDiGraph()

    k2name = {}
    for i, (k, mp) in enumerate(meeting_points.items()):
        node_name = 'P%d' % i
        k2name[k] = node_name

        G.add_node(node_name, point=mp.point)

    ls2start = {}
    ls2end = {}
    for i, (k, mp) in enumerate(meeting_points.items()):
        node_name = k2name[k]

        for l in mp.incoming:
            ls2end[resolve_alias(l)] = node_name
        for l in mp.outcoming:
            ls2start[resolve_alias(l)] = node_name

    # print(ls2start)
    # print(ls2end)

    for l in ls2start:
        n1 = ls2start[l]
        n2 = ls2end[l]
        G.add_edge(n1, n2, lane=l)

    return SkeletonGraphResult(root=root, root2=root2, G=G)
Beispiel #7
0
def get_skeleton_graph(po: DuckietownMap) -> SkeletonGraphResult:
    """ Returns a graph with the lane segments of the map """

    root = PlacedObject()

    meeting_points: Dict[str, MeetingPoint] = defaultdict(MeetingPoint)

    for i, it in enumerate(iterate_by_class(po, LaneSegment)):
        lane_segment = cast(LaneSegment, it.object)
        assert isinstance(lane_segment, LaneSegment), lane_segment

        absolute_pose = it.transform_sequence.asmatrix2d()

        lane_segment_transformed = transform_lane_segment(lane_segment, absolute_pose)

        identity = SE2Transform.identity()
        name = "ls%03d" % i
        root.set_object(name, lane_segment_transformed, ground_truth=identity)

        p0 = discretize(lane_segment_transformed.control_points[0])
        p1 = discretize(lane_segment_transformed.control_points[-1])

        if not p0 in meeting_points:
            meeting_points[p0] = MeetingPoint(
                set(), set(), set(), lane_segment_transformed.control_points[0], None, None,
            )
        if not p1 in meeting_points:
            meeting_points[p1] = MeetingPoint(
                set(), set(), set(), lane_segment_transformed.control_points[-1], None, None,
            )

        # meeting_points[p0].point = lane_segment_transformed.control_points[0]
        meeting_points[p0].outcoming.add(name)
        # meeting_points[p1].point = lane_segment_transformed.control_points[-1]
        meeting_points[p1].incoming.add(name)

        meeting_points[p0].connects_to.add(p1)

        tile_coords = [_ for _ in it.transform_sequence.transforms if isinstance(_, TileCoords)]
        if not tile_coords:
            raise ZException(p0=p0, p1=p1, transforms=it.transform_sequence.transforms)
        tile_coord = tile_coords[0]
        ij = tile_coord.i, tile_coord.j
        meeting_points[p0].into_tile = ij
        meeting_points[p1].from_tile = ij

    for k, mp in meeting_points.items():
        if (len(mp.incoming) == 0) or (len(mp.outcoming) == 0):
            msg = "Completeness assumption violated at point %s: %s" % (k, mp)
            raise Exception(msg)

    G0 = graph_for_meeting_points(meeting_points)
    # compress the lanes which are contiguous

    aliases = {}

    created = {}

    def resolve_alias(x):
        return x if x not in aliases else resolve_alias(aliases[x])

    for k, mp in list(meeting_points.items()):
        # continue
        if not (len(mp.incoming) == 1 and len(mp.outcoming) == 1):
            continue

        # not necessary anymore
        meeting_points.pop(k)
        lin_name = list(mp.incoming)[0]
        lout_name = list(mp.outcoming)[0]

        lin_name = resolve_alias(lin_name)
        lout_name = resolve_alias(lout_name)

        # print(' -> %s and %s meet at %s' % (lin_name, lout_name, mp))
        # print('%s and %s meet at %s' % (lin_name, lout_name, k))

        def get(it):
            if it in root.children:
                return root.children[it]
            else:
                return created[it]

        lin = get(lin_name)
        lout = get(lout_name)

        # name = 'alias%s' % (len(aliases))
        # name = '%s-%s' % (lin_name, lout_name)
        name = "L%d" % (len(created))
        width = lin.width

        control_points = lin.control_points + lout.control_points[1:]
        ls = LaneSegment(width=width, control_points=control_points)
        created[name] = ls

        aliases[lin_name] = name
        aliases[lout_name] = name
        # print('new alias %s' % name)
    #
    # print('created: %s' % list(created))
    # print('aliases: %s' % aliases)
    root2 = PlacedObject()
    for k, v in created.items():
        if not k in aliases:
            root2.set_object(k, v, ground_truth=SE2Transform.identity())

    for k, v in root.children.items():
        if not k in aliases:
            root2.set_object(k, v, ground_truth=SE2Transform.identity())

    G = nx.MultiDiGraph()

    k2name = {}
    for i, (k, mp) in enumerate(meeting_points.items()):
        node_name = "P%d" % i
        k2name[k] = node_name

        G.add_node(node_name, point=mp.point)

    ls2start = {}
    ls2end = {}
    for i, (k, mp) in enumerate(meeting_points.items()):
        node_name = k2name[k]

        for l in mp.incoming:
            ls2end[resolve_alias(l)] = node_name
        for l in mp.outcoming:
            ls2start[resolve_alias(l)] = node_name

    # print(ls2start)
    # print(ls2end)

    for l in ls2start:
        n1 = ls2start[l]
        n2 = ls2end[l]
        G.add_edge(n1, n2, lane=l)

    return SkeletonGraphResult(root=root, root2=root2, G=G, G0=G0)