def read_rho_rh(modelpath):
    mstar_conv = dyn.conv('mstar', modelpath + 'initial.conv.sh')
    l_conv = dyn.conv('l', modelpath + 'initial.conv.sh')

    #datarho = np.genfromtxt(modelpath+'initial.rho_lagrad.dat')
    #rho_rh0 = datarho[:,20][0]*mstar_conv/l_conv**3
    filerho = modelpath + 'initial.rho_lagrad.dat'
    with open(filerho, 'r') as frho:
        for i, line in enumerate(frho):
            if i == 2:  # 3th line
                data = line.split()
                rho_rh0 = float(data[20]) * mstar_conv / l_conv**3
                break

    return rho_rh0
Beispiel #2
0
def estimate_Nmsp_Lgamma_atpresent():
    sample_init = np.genfromtxt(
        '/projects/b1095/syr904/projects/GCE/catalog/cluster_sample_initial.dat',
        dtype=str)
    N_star = sample_init[:, 0]
    rv = sample_init[:, 1]
    rg = sample_init[:, 2]
    z = sample_init[:, 3]
    rg_init = sample_init[:, 5].astype(float)

    num_msp = []
    L_gamma = []
    Mass = []
    for ii in range(len(N_star)):
        if rg_init[ii] <= 3.:
            modelpath = '/projects/b1091/CMC_Grid_March2019/rundir/rv' + rv[
                ii] + '/rg' + rg[ii] + '/z' + z[ii] + '/' + N_star[ii] + '/'

            m_conv = dyn.conv('m', modelpath + 'initial.conv.sh')

            nsfile = modelpath + 'initial.ns.dat'
            with open(nsfile, 'r') as fns:
                for line in fns:
                    pass
                ns_last_line = line
                datans = ns_last_line.split()

            num_msp.append(int(datans[6]))

            dynfile = modelpath + 'initial.dyn.dat'
            with open(dynfile, 'r') as fdyn:
                for line in fdyn:
                    pass
                dyn_last_line = line
                datadyn = dyn_last_line.split()

            Mass.append(float(datadyn[4]) * m_conv)

            lgammafile = '/projects/b1095/syr904/projects/GCE/catalog/Lgamma_alltime_maingrid.dat'
            pathfile = '/projects/b1095/syr904/projects/GCE/catalog/path_allfinished_newruns_maingrid.dat'
            datalg = np.genfromtxt(lgammafile)
            modellg = datalg[:, 0]
            tlg = datalg[:, 1]
            lmsp = datalg[:, 2]

            sourcedir = np.genfromtxt(pathfile, dtype=str)
            paths = list(sourcedir[:, 0])
            model_no = paths.index(modelpath)
            print(model_no, modelpath)

            lg_last = lmsp[modellg == model_no]
            if not len(lg_last): continue

            lg_last = lg_last[-1]
            print(lg_last, model_no)
            L_gamma.append(lg_last)

    print(sum(num_msp), sum(L_gamma), sum(Mass))
Beispiel #3
0
def find_rh_density(modelpath, thesnap):
    filestr = modelpath + 'initial'
    snap = modelpath + thesnap
    dynfile = np.genfromtxt(filestr + '.dyn.dat')
    tdyn = dynfile[:, 0]
    r_h = dynfile[:, 20]

    m = []
    radius = []

    t_conv = dyn.conv('t', filestr + '.conv.sh')
    l_conv = dyn.conv('l', filestr + '.conv.sh')

    print(l_conv)

    tsnap = dyn.get_time(snap)
    for xx in range(len(tdyn)):
        if round(tdyn[xx], 6) == tsnap:
            rh_snap = r_h[xx]

    print(rh_snap)

    with gzip.open(snap, 'r') as fsnap:
        next(fsnap)
        next(fsnap)
        for line in fsnap:
            data = line.split()
            m.append(float(data[1]))
            radius.append(float(data[2]) * l_conv)
            if float(data[2]) > rh_snap:
                break

    #vol = (2*twopi/3)*(rh_snap*l_conv)**3
    vol = (2 * twopi / 3) * (radius[-1])**3
    averho_rh = sum(m) / vol

    return averho_rh, m, radius
Beispiel #4
0
modelfiles = np.genfromtxt(
    '/projects/b1091/CMC_Grid_March2019/rundir/path.dat',
    dtype=str,
    delimiter='')
sourcedir = modelfiles[:, 0]

status = []
for i in range(len(sourcedir)):
    filestr1 = sourcedir[i] + 'initial'
    dynfile1 = filestr1 + '.dyn.dat'

    filestr2 = sourcedir[i] + 'initial2'
    dynfile2 = filestr2 + '.dyn.dat'

    if os.path.isfile(dynfile2) and os.path.getsize(dynfile2) > 0:
        t_conv = dyn.conv('t', filestr1 + '.conv.sh')

        with open(dynfile2, 'r') as fdyn:
            next(fdyn)
            next(fdyn)
            for line in fdyn:
                datadyn = line.split()
                totaln = float(datadyn[3])
                break

        with open(dynfile2, 'r') as fdyn:
            for line in fdyn:
                pass
            lastdyn = line.split()

        time = float(lastdyn[0]) * t_conv
Beispiel #5
0
def find_BH_XX_atsnap(filepath, lowlim, highlim, snapno, savename):
    property_init, property_finl, property_des = ntc.find_tc_properties_final(
        filepath)
    ID0 = property_init['id0']
    ID1 = property_init['id1']
    T = property_init['time']
    Types = property_init['type']

    filestr = filepath + 'initial'
    #snaps=dyn.get_snapshots(filestr)
    #lastsnap=snaps[-1]
    snap = filepath + 'initial.snap0' + str(snapno) + '.dat.gz'
    t_conv = dyn.conv('t', filestr + '.conv.sh')
    l_conv = dyn.conv('l', filestr + '.conv.sh')
    time = dyn.get_time(snap) * t_conv

    #os.system('rm '+savepath)
    fmsb = open(filepath + savename + str(snapno) + '.dat', 'w+')
    fmsb.write(
        '#1.ID0 2.ID1 3.M0 4.M1 5.K0 6.K1 7.a(AU) 8.ecc 9.radrol0 10.radrol1 11.B(G) 12.P(sec) 13.tcflag 14.SN 15.TC_time(Myr) 16.r(pc)\n'
    )

    with gzip.open(snap, 'r') as flast:
        next(flast)
        next(flast)
        for line in flast:
            datalast = line.split()
            if int(datalast[7]) == 1:
                if int(datalast[17]) == 14 and lowlim <= int(
                        datalast[18]) <= highlim:
                    ID0ms = int(datalast[10])
                    ID1ms = int(datalast[11])
                    tcflag = 4
                    tctime = -100
                    for ii in range(len(ID0)):
                        if (ID0ms == ID0[ii] and ID1ms == ID1[ii]) or (
                                ID1ms == ID0[ii] and ID0ms == ID1[ii]):
                            if Types[ii] == 'SS_COLL_Giant':
                                tcflag = 81
                                tctime = T[ii] * t_conv
                                break
                            if Types[ii] == 'SS_COLL_TC_P':
                                tcflag = 91
                                tctime = T[ii] * t_conv
                                break
                        elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                            if Types[ii] == 'SS_COLL_Giant':
                                tcflag = 82
                                tctime = T[ii] * t_conv
                                break
                            if Types[ii] == 'SS_COLL_TC_P':
                                tcflag = 92
                                tctime = T[ii] * t_conv
                                break

                    fmsb.write(
                        '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                        (int(datalast[10]), int(datalast[11]),
                         float(datalast[8]), float(
                             datalast[9]), int(datalast[17]), int(
                                 datalast[18]), float(datalast[12]),
                         float(datalast[13]), float(datalast[43]),
                         float(datalast[44]), float(datalast[47]),
                         float(twopi * yearsc / float(datalast[45])), tcflag,
                         int(datalast[49]), tctime,
                         float(datalast[2]) * l_conv))

                if lowlim <= int(datalast[17]) <= highlim and int(
                        datalast[18]) == 14:
                    ID0ms = int(datalast[11])
                    ID1ms = int(datalast[10])
                    tcflag = 4
                    tctime = -100
                    for ii in range(len(ID0)):
                        if (ID0ms == ID0[ii] and ID1ms == ID1[ii]) or (
                                ID1ms == ID0[ii] and ID0ms == ID1[ii]):
                            if Types[ii] == 'SS_COLL_Giant':
                                tcflag = 81
                                tctime = T[ii] * t_conv
                                break
                            if Types[ii] == 'SS_COLL_TC_P':
                                tcflag = 91
                                tctime = T[ii] * t_conv
                                break
                        elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                            if Types[ii] == 'SS_COLL_Giant':
                                tcflag = 82
                                tctime = T[ii] * t_conv
                                break
                            if Types[ii] == 'SS_COLL_TC_P':
                                tcflag = 92
                                tctime = T[ii] * t_conv
                                break

                    fmsb.write(
                        '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                        (int(datalast[11]), int(datalast[10]),
                         float(datalast[9]), float(
                             datalast[8]), int(datalast[18]), int(
                                 datalast[17]), float(datalast[12]),
                         float(datalast[13]), float(datalast[44]),
                         float(datalast[43]), float(datalast[48]),
                         float(twopi * yearsc / float(datalast[46])), tcflag,
                         int(datalast[50]), tctime,
                         float(datalast[2]) * l_conv))

    fmsb.close()
Beispiel #6
0
def find_WD_XX_atsnap_hdf5(filepath, lowlim, highlim, snapno, savename):
    property_init, property_finl, property_des = nhf.find_tc_properties(
        filepath)
    ID0 = property_init['id0']
    ID1 = property_init['id1']
    T = property_init['time']
    Types = property_init['type']

    all_keys = np.genfromtxt(filepath + 'snap_keys.txt', dtype='str')
    all_snapno = all_keys[:, 0]
    all_snaptime = all_keys[:, 1]

    thekey = '/' + str(snapno) + '(t=' + all_snaptime[snapno] + ')'

    filestr = filepath + 'initial'
    snap = cmct.Snapshot(
        fname=filepath + 'initial.snapshots.h5',
        snapshot_name=thekey,
        conv=filepath + 'initial.conv.sh',
        dist=4.52,  # distance to cluster in kpc
        z=0.0038)

    t_conv = dyn.conv('t', filestr + '.conv.sh')
    l_conv = dyn.conv('l', filestr + '.conv.sh')

    #os.system('rm '+savepath)
    fmsb = open(filepath + savename + str(snapno) + '.dat', 'w+')
    fmsb.write(
        '#1.ID0 2.ID1 3.M0 4.M1 5.K0 6.K1 7.a(AU) 8.ecc 9.radrol0 10.radrol1 11.B(G) 12.P(sec) 13.tcflag 14.SN 15.TC_time(Myr) 16.R(pc)\n'
    )

    binflag = snap.data['binflag']
    k0 = snap.data['bin_startype0']
    k1 = snap.data['bin_startype1']
    id0 = snap.data['id0']
    id1 = snap.data['id1']
    m0 = snap.data['m0_MSUN']
    m1 = snap.data['m1_MSUN']
    sma = snap.data['a_AU']
    ecc = snap.data['e']
    rad0 = snap.data['radrol0']
    rad1 = snap.data['radrol1']
    B0 = snap.data['B0']
    B1 = snap.data['B1']
    ospin0 = snap.data['ospin0']
    ospin1 = snap.data['ospin1']
    SN0 = snap.data['formation0']
    SN1 = snap.data['formation1']
    Rpc = snap.data['r'] * l_conv

    for xx in range(len(binflag)):
        if binflag[xx] == 1:
            if 10 <= k0[xx] <= 12 and lowlim <= k1[xx] <= highlim:
                ID0ms = id0[xx]
                ID1ms = id1[xx]
                tcflag = 4
                tctime = -100
                for ii in range(len(ID0)):
                    if (ID0ms == ID0[ii]
                            and ID1ms == ID1[ii]) or (ID1ms == ID0[ii]
                                                      and ID0ms == ID1[ii]):
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 81
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 91
                            tctime = T[ii] * t_conv
                            break
                    elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 82
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 92
                            tctime = T[ii] * t_conv
                            break

                fmsb.write(
                    '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                    (id0[xx], id1[xx], m0[xx], m1[xx], k0[xx], k1[xx], sma[xx],
                     ecc[xx], rad0[xx], rad1[xx], B0[xx], twopi * yearsc /
                     ospin0[xx], tcflag, SN0[xx], tctime, Rpc[xx]))

            if lowlim <= k0[xx] <= highlim and 10 <= k1[xx] <= 12:
                ID0ms = id1[xx]
                ID1ms = id0[xx]
                tcflag = 4
                tctime = -100
                for ii in range(len(ID0)):
                    if (ID0ms == ID0[ii]
                            and ID1ms == ID1[ii]) or (ID1ms == ID0[ii]
                                                      and ID0ms == ID1[ii]):
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 81
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 91
                            tctime = T[ii] * t_conv
                            break
                    elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 82
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 92
                            tctime = T[ii] * t_conv
                            break

                fmsb.write(
                    '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                    (id1[xx], id0[xx], m1[xx], m0[xx], k1[xx], k0[xx], sma[xx],
                     ecc[xx], rad1[xx], rad0[xx], B1[xx], twopi * yearsc /
                     ospin1[xx], tcflag, SN1[xx], tctime, Rpc[xx]))
    fmsb.close()
def cluster_inspiral(r_initial, cluster_path, rho_initial, cluster_status):
    #datadyn = np.genfromtxt(cluster_path+'initial.dyn.dat')
    #datarho = np.genfromtxt(cluster_path+'initial.rho_lagrad.dat')
    #m_gc = np.array(datadyn[:,4])*m_conv
    #rho_halfm = np.array(datarho[:,20])*(mstar_conv/l_conv**3)
    #t_rho = np.array(datarho[:,0])*t_conv

    #for kk in range(len(t_rho)-1):
    #    delta_t = (t_rho[kk+1]-t_rho[kk])/1000.
    #    rg_new = df(delta_t, rg_old, m_gc[kk])

    #    rho_ga_new = galaxy_rho_r(rg_new, circ_vel)
    #    if rho_halfm[kk+1] <= rho_ga_new:
    #        print('cluster disrupted', t_rho[kk+1], rg_new, rho_halfm[kk+1])
    #        rg_disrupt = rg_new; t_disrupt = t_rho[kk+1]; rho_disrupt = rho_halfm[kk+1]
    #        break

    #    rg_old = rg_new

    t_conv = dyn.conv('t', cluster_path + 'initial.conv.sh')
    l_conv = dyn.conv('l', cluster_path + 'initial.conv.sh')
    m_conv = dyn.conv('m', cluster_path + 'initial.conv.sh')
    mstar_conv = dyn.conv('mstar', cluster_path + 'initial.conv.sh')

    rg_disrupt = -100
    t_disrupt = -100
    rho_disrupt = -100

    filerho = cluster_path + 'initial.rho_lagrad.dat'
    filedyn = cluster_path + 'initial.dyn.dat'

    with open(filerho, 'r') as fr:
        next(fr)
        next(fr)
        for i_rho, l_rho in enumerate(fr):
            pass
    nline_rho = i_rho + 1
    #print(nline_rho)
    line_cut = int(0.7 * nline_rho)

    with open(filedyn, 'r') as fd:
        next(fd)
        next(fd)
        for l_dyn in fd:
            data = l_dyn.split()
            m_old = float(data[4])
            break

    print(m_old)

    ##Initialize the spiral in
    rg_old = r_initial
    t_old = 0.
    m_old = m_old * m_conv
    rho_halfm_old = rho_initial

    ##Starting spiral in
    check = 0
    with open(filerho, 'r') as frho, open(filedyn, 'r') as fdyn:
        next(frho)
        next(frho)
        next(fdyn)
        next(fdyn)
        for i, lines in enumerate(zip(frho, fdyn)):
            if i == 0: continue
            if i <= line_cut and i % 10 != 0:
                continue
            datarho = lines[0].split()
            datadyn = lines[1].split()
            t_curr = float(datarho[0])
            rho_halfm_curr = float(datarho[20]) * (mstar_conv / l_conv**3)

            m_curr = float(datadyn[4]) * m_conv

            delta_t = (t_curr - t_old) * t_conv / 1000.
            rg_new = df(delta_t, rg_old, m_old)

            if rg_new <= 0:
                check = 1
                print('cluster reached center', t_curr * t_conv, rg_new,
                      rho_halfm_curr)
                rg_disrupt = rg_old
                t_disrupt = t_old * t_conv
                rho_disrupt = rho_halfm_old
                type_disrupt = 1
                break

            rho_ga_new = galaxy_rho_r(rg_new, circ_vel)
            if (rho_halfm_curr <= rho_ga_new):
                check = 1
                print('cluster disrupted', t_curr * t_conv, rg_new,
                      rho_halfm_curr)
                rg_disrupt = rg_new
                t_disrupt = t_curr * t_conv
                rho_disrupt = rho_halfm_curr
                type_disrupt = 2
                break

            t_old = t_curr
            m_old = m_curr
            rg_old = rg_new
            rho_halfm_old = rho_halfm_curr

            #print(i)
            #print(rho_halfm_curr, rho_ga_new, m_curr, rg_new)

    if check == 0:
        rg_disrupt = rg_new
        t_disrupt = t_curr * t_conv
        rho_disrupt = rho_halfm_curr
        type_disrupt = 3

    print(rg_disrupt, t_disrupt, rho_disrupt)

    return rg_disrupt, t_disrupt, rho_disrupt, type_disrupt
def read_property_attime(modelpath, time):  ##time in Myr
    Num_msp = -100
    Mass = -100
    Lum_gamma = -100
    Num_msp_old = -100
    Mass_old = -100
    Lum_gamma_old = -100

    t_conv = dyn.conv('t', modelpath + 'initial.conv.sh')
    m_conv = dyn.conv('m', modelpath + 'initial.conv.sh')

    ##Extract number of MSP
    with open(modelpath + 'initial.ns.dat', 'r') as fns:
        next(fns)
        for i, line in enumerate(fns):
            datans = line.split()
            t_ns = float(datans[0]) * t_conv
            if i == 0: n_msp_old = int(datans[6])
            if round(t_ns, 6) >= round(time, 6):
                print(t_ns, time)
                Num_msp = int(datans[6])
                Num_msp_old = n_msp_old
                break
            n_msp_old = int(datans[6])

    if Num_msp == -100:
        Num_msp = int(datans[6])
        Num_msp_old = int(datans[6])

    ##Extract mass of cluster
    datadyn = np.genfromtxt(modelpath + 'initial.dyn.dat')
    with open(modelpath + 'initial.dyn.dat', 'r') as fdyn:
        next(fdyn)
        next(fdyn)
        for i, line in enumerate(fdyn):
            datadyn = line.split()
            t_dyn = float(datadyn[0]) * t_conv
            if i == 0: m_dyn_old = float(datadyn[4]) * m_conv
            if round(t_dyn, 6) >= round(time, 6):
                print(t_dyn, time)
                Mass = float(datadyn[4]) * m_conv
                Mass_old = m_dyn_old
                break
            m_dyn_old = float(datadyn[4]) * m_conv

    if Mass == -100:
        Mass = float(datadyn[4]) * m_conv
        Mass_old = float(datadyn[4]) * m_conv

    ##Extract Lgamma
    if Num_msp != 0 or Num_msp_old != 0:
        sourcedir = np.genfromtxt(
            '/projects/b1095/syr904/projects/GCE/catalog/path_allfinished_newruns_maingrid.dat',
            dtype=str)
        paths = sourcedir[:, 0]
        model_no = list(paths).index(modelpath)

        datagama = np.genfromtxt(
            '/projects/b1095/syr904/projects/GCE/catalog/Lgamma_alltime_maingrid.dat'
        )
        model_gama = datagama[:, 0]
        t_gama = datagama[:, 1]
        lgama = datagama[:, 2]

        t_model = t_gama[model_gama == model_no]
        lum_model = lgama[model_gama == model_no]
        for xx in range(len(t_model)):
            if round(t_model[xx], 6) >= round(time, 6):
                Lum_gamma = lum_model[xx]
                Lum_gamma_old = lum_model[xx - 1]

    #print(Num_msp, Mass, Lum_gamma, Num_msp_old, Mass_old, Lum_gamma_old)
    return Num_msp, Mass, Lum_gamma, Num_msp_old, Mass_old, Lum_gamma_old
Beispiel #9
0
def find_Lgammaray_alltime(pathlist, start, end, eta_gamma=0.1):
    Cscale = 9.6 * 10**33  ##in erg/s
    sourcedir = np.genfromtxt(pathlist, dtype=str)
    paths = sourcedir[:, 0]
    status = sourcedir[:, 1]

    #fgamma=open('/projects/b1095/syr904/N1e7_rg8_f5_z0.002/Lgamma_alltime_N1e7.dat', 'a+')
    #fgamma.write('#1.Model 2.T(Myr) 3.Lmsp\n')

    for ii in range(start, end):
        print(paths[ii])
        filestr = paths[ii] + 'initial'
        t_conv = dyn.conv('t', filestr + '.conv.sh')

        s = paths[ii].split('/')
        n_star = s[-2]
        z = s[-3][1:]
        rg = s[-4][2:]
        rv = s[-5][2:]

        Lmsp = []
        time = []

        with open(filestr + '.morepulsars.dat', 'r') as fpsr:
            next(fpsr)
            for line in fpsr:
                data = line.split()
                if int(data[2]) != 1:
                    Pspin = float(data[9])  ##in sec
                    B = float(data[7])
                    if Pspin <= 0.03:
                        Lmsp.append(Cscale * (eta_gamma / 0.2) *
                                    (B / 10**8.5)**2 * (3. /
                                                        (Pspin * 1000.))**4)
                        time.append(float(data[1]) * t_conv)

                else:
                    if int(data[11]) == 13:
                        Pspin = float(data[9])  ##in sec
                        B = float(data[7])
                        if Pspin <= 0.03:
                            Lmsp.append(Cscale * (eta_gamma / 0.2) *
                                        (B / 10**8.5)**2 *
                                        (3. / (Pspin * 1000.))**4)
                            time.append(float(data[1]) * t_conv)

                    if int(data[12]) == 13:
                        Pspin = float(data[10])  ##in sec
                        B = float(data[8])
                        if Pspin <= 0.03:
                            Lmsp.append(Cscale * (eta_gamma / 0.2) *
                                        (B / 10**8.5)**2 *
                                        (3. / (Pspin * 1000.))**4)
                            time.append(float(data[1]) * t_conv)

        #print(time)

        #sums = {}
        #for key, value in zip(time,Lmsp):
        #    try:
        #        sums[key] += value
        #    except KeyError:
        #        sums[key] = value

        #print(sums, sums.keys())
        #allkey = sums.keys()
        #for key in sums:
        #	thetime = float(key)
        #	#print(thetime)
        #	theL = sums[key]
        #	fgamma.write('%d %f %e\n'%(ii, thetime, theL))

        fgamma = open(
            '/projects/b1095/syr904/projects/GCE/catalog/data_lgamma/model_rv'
            + rv + '_rg' + rg + '_z' + z + '_' + n_star + '.txt', 'a+')
        fgamma.write('#1.Model 2.T(Myr) 3.Lmsp\n')

        allkey = list(Counter(time).keys())
        #print(allkey)
        for x in range(len(allkey)):
            theL = 0
            for y in range(len(time)):
                if time[y] == allkey[x]:
                    theL += Lmsp[y]

            fgamma.write('%d %f %e\n' % (ii, allkey[x], theL))

        print(ii)

    fgamma.close()