Beispiel #1
0
    def __init__(self, length, radius, mass, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.endmass = endmass

        Jz = radius**2 / 2
        Jxy = (3 * radius**2 + length**2) / 12
        inertia = mass * np.diag([Jxy, Jxy, Jz])

        self.A = mass * Jxy + endmass * (length / 2)**2
        self.C = mass * Jz

        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [0, 0, 1])
        self.body = RigidBody('body', mass, inertia)
        self.offset = RigidConnection('offset', [0, 0, length / 2])
        self.endbody = RigidBody('end', endmass)

        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)

        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.endbody)

        self.system = System(self.pivot)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
Beispiel #2
0
    def __init__(self, length, radius, mass, spin, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin
        self.endmass = endmass

        x = np.linspace(-length / 2, length / 2)
        modes = linearisation.ModalRepresentation(
            x=x,
            shapes=np.zeros((len(x), 3, 0)),
            rotations=np.zeros((len(x), 3, 0)),
            density=np.ones_like(x) * mass / length,
            mass_axis=np.zeros((len(x), 2)),
            section_inertia=np.ones_like(x) * radius**2 / 4,
            freqs=np.zeros((0, )),
        )

        self.bearing = Hinge('bearing', [0, 0, 1])
        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [0, 0, 1], rotmat_y(-np.pi / 2))
        self.body = ModalElement('body', modes)
        self.offset = RigidConnection('offset', [0, 0, length / 2])
        self.endbody = RigidBody('end', endmass)

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.endbody)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
Beispiel #3
0
    def __init__(self, length, radius, mass, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.endmass = endmass

        Jx = mass * radius**2 / 2
        Jyz = mass * (3 * radius**2 + length**2) / 12
        self.A = Jyz + endmass * (length / 2)**2
        self.C = Jx

        self.pivot = Hinge('pivot', [0, 1, 0])
        self.offset = RigidConnection('offset', [0, 0, -length / 2])
        self.axis = Hinge('axis', [0, 0, 1], rotmat_y(-np.pi / 2))
        self.body = UniformBeam('body',
                                length,
                                mass / length,
                                1,
                                1,
                                1,
                                Jx=Jx / 2)  # /2 because added to both ends
        self.endoffset = RigidConnection('endoffset', [0, 0, length / 2])
        self.endbody = RigidBody('end', endmass)

        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.axis)
        self.axis.add_leaf(self.body)

        self.pivot.add_leaf(self.endoffset)
        self.endoffset.add_leaf(self.endbody)
        self.system = System(self.pivot)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
        self.system.prescribe(self.body, acc=0.0)  # rigid beam
Beispiel #4
0
    def __init__(self, length, radius, mass, spin, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin
        self.endmass = endmass
        Jx = mass * radius**2 / 2

        self.bearing = Hinge('bearing', [0, 0, 1])
        self.pivot = Hinge('pivot', [0, 1, 0])
        self.offset = RigidConnection('offset', [-length / 2, 0, 0])
        self.axis = Hinge('axis', [1, 0, 0])
        self.body = UniformBeam('body',
                                length,
                                mass / length,
                                1,
                                1,
                                1,
                                Jx=Jx / 2)  # /2 because added to both ends
        self.endbody = RigidBody('end', endmass)

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.offset.add_leaf(self.endbody)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
        self.system.prescribe(self.body, acc=0.0)  # rigid beam
Beispiel #5
0
    def __init__(self, length, radius, mass, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.endmass = endmass

        # corrected radius for lumped masses
        mr = radius / np.sqrt(2)
        root3 = np.sqrt(3)

        self.A = 3 * (mass / 3) * mr**2 / 2 + endmass * (length / 2)**2
        self.C = 3 * (mass / 3) * mr**2

        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [0, 0, 1])
        self.arm1 = RigidConnection('arm1', [mr, 0, 0])
        self.arm2 = RigidConnection('arm2', [-mr / 2, mr * root3 / 2, 0])
        self.arm3 = RigidConnection('arm3', [-mr / 2, -mr * root3 / 2, 0])
        self.body = RigidBody('body', mass / 3)
        self.body2 = RigidBody('body2', mass / 3)
        self.body3 = RigidBody('body3', mass / 3)
        self.offset = RigidConnection('offset', [0, 0, length / 2])
        self.endbody = RigidBody('end', endmass)

        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.arm1)
        self.axis.add_leaf(self.arm2)
        self.axis.add_leaf(self.arm3)
        self.arm1.add_leaf(self.body)
        self.arm2.add_leaf(self.body2)
        self.arm3.add_leaf(self.body3)

        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.endbody)
        self.system = System(self.pivot)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
Beispiel #6
0
    def __init__(self, length, radius, mass, spin):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin

        Jx = radius**2 / 2
        Jyz = (3 * radius**2 + length**2) / 12
        Jyz_0 = Jyz + (length / 2)**2  # parallel axis theorem
        inertia = mass * np.diag([Jx, Jyz_0, Jyz_0])

        self.bearing = Hinge('bearing', [0, 0, 1])
        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [1, 0, 0])
        self.body = RigidBody('body', mass, inertia, [length / 2, 0, 0])

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed
Beispiel #7
0
brun = pybladed.data.BladedRun(bladed_path)
thrust = brun.get('rotating hub Fx')
bladed_defl = np.c_[brun.get('Nacelle fore-aft displacement'),
                    brun.get('Nacelle nod angle'), ]

#loading = PointLoading(blade, wind_table, None)
thrust_time = [0, 1, 2, 10]
thrust_force = [0, 0, 10e3, 10e3]
thrust = np.c_[thrust_force, np.zeros((4, 2))].T
loadfunc = scipy.interpolate.interp1d(thrust_time, thrust)

# Modal element
base = RigidConnection('base', rotation=rotmat_y(-np.pi / 2))
el = ModalElement('el', modes, distal=True, damping_freqs=[8.269, 10.248])
rna = RigidBody('rna',
                24000,
                np.diag([6400003, 6400003, 4266667]),
                nodal_load=loadfunc)
base.add_leaf(el)
el.add_leaf(rna)
system = System(base)

integ = Integrator(system)
integ.add_output(el.output_deflections())
integ.add_output(el.output_rotations())
integ.add_output(dynamics.LoadOutput(rna.iprox))

linsys = LinearisedSystem(system)


def ani_xy(s, t, y):
    return dynvis.anim(s, t, y, (0, 1), (-5, 45), (-5, 5), velocities=False)
import pybladed.data
brun = pybladed.data.BladedRun(bladed_path)
bladed_defl = np.c_[brun.get('Nacelle fore-aft displacement'),
                    brun.get('Nacelle nod angle'), ]

#loading = PointLoading(blade, wind_table, None)
thrust_time = [0, 1, 2, 10]
thrust_force = [0, 0, 10e3, 10e3]
thrust = np.c_[thrust_force, np.zeros((4, 2))].T
loadfunc = scipy.interpolate.interp1d(thrust_time, thrust)

# Modal element
base = RigidConnection('base', rotation=rotmat_y(-np.pi / 2))
el = ModalElement('el', modes, distal=True, damping_freqs=combined_freqs)
rna = RigidBody('rna',
                109993,
                np.diag([19406630, 19406630, 38813240]),
                nodal_load=loadfunc)
base.add_leaf(el)
el.add_leaf(rna)
system = System(base)

integ = Integrator(system)
integ.add_output(el.output_deflections())
integ.add_output(el.output_rotations())
integ.add_output(dynamics.LoadOutput(rna.iprox))

linsys = LinearisedSystem(system)


def ani_xy(s, t, y):
    return dynvis.anim(s, t, y, (0, 1), (-5, 45), (-5, 5), velocities=False)
dynamics.OPT_GEOMETRIC_STIFFNESS = False

# Create model
bladed_file = r'C:\Users\Rick Lupton\Dropbox\phd\Bladed\Models\OC3-Hywind_SparBuoy_NREL5MW.prj'
print "Loading modes from '%s'..." % bladed_file
towerdef = Tower(bladed_file)
modes = towerdef.modal_rep()

endmass = 100000
endinertia = 100

el1 = ModalElement('el', modes, distal=False)
system1 = System(el1)

el2 = ModalElement('el', modes, distal=True)
body = RigidBody('body', endmass, inertia=endinertia * np.eye(3))
el2.add_leaf(body)
system2 = System(el2)

integ1 = Integrator(system1)
integ1.add_output(el1.output_positions())
integ2 = Integrator(system2, outputs=('pos', 'vel', 'acc'))
integ2.add_output(el2.output_positions())
integ2.add_output(dynamics.NodeOutput(body.iprox))
integ2.add_output(dynamics.NodeOutput(body.iprox, deriv=2))
integ2.add_output(dynamics.LoadOutput(body.iprox))
integ2.add_output(dynamics.StrainOutput(el2.imult))

if False:
    t, y1 = integ1.integrate(20, 0.05)
    t, y2 = integ2.integrate(20, 0.05)
Beispiel #10
0
    def __init__(self, bladed_file, root_length=0):
        # Load modes but use a simple flapped blade
        print "Loading modes from '%s'..." % bladed_file
        self.blade = Blade(bladed_file)
        self.tower = Tower(bladed_file)
        self.modes = self.blade.modal_rep()

        # Calculate equivalent blade properties
        I1 = self.modes.I0[0]
        I2 = self.modes.J0[0, 0]
        print I1, I2
        wflap = self.modes.freqs[0]
        bmass = self.modes.mass
        inertia = self.modes.inertia_tensor(np.zeros(len(self.modes.freqs)))
        Xc = [I1 / bmass, 0, 0]
        kflap = I2 * wflap**2

        Ry = rotmat_y(-pi / 2)
        Rhb1 = rotmat_x(0 * 2 * pi / 3)
        Rhb2 = rotmat_x(1 * 2 * pi / 3)
        Rhb3 = rotmat_x(2 * 2 * pi / 3)

        self.base = FreeJoint('base')
        self.towerlink = RigidConnection('tower', [0, 0, self.tower.hubheight])
        self.bearing = Hinge('bearing', [1, 0, 0])
        root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]),
                                dot(Rhb1, Ry))
        root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]),
                                dot(Rhb2, Ry))
        root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]),
                                dot(Rhb3, Ry))
        self.flap1 = Hinge('flap1', [0, 1, 0])
        self.flap2 = Hinge('flap2', [0, 1, 0])
        self.flap3 = Hinge('flap3', [0, 1, 0])
        self.blade1 = RigidBody('blade1', bmass, inertia, Xc)
        self.blade2 = RigidBody('blade2', bmass, inertia, Xc)
        self.blade3 = RigidBody('blade3', bmass, inertia, Xc)

        self.flap1.stiffness = self.flap2.stiffness = self.flap3.stiffness = kflap

        self.base.add_leaf(self.towerlink)
        self.towerlink.add_leaf(self.bearing)
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.flap1)
        root2.add_leaf(self.flap2)
        root3.add_leaf(self.flap3)
        self.flap1.add_leaf(self.blade1)
        self.flap2.add_leaf(self.blade2)
        self.flap3.add_leaf(self.blade3)
        self.system = System(self.base)

        # Prescribed DOF accelerations - constant rotor speed
        self.base_motion = None
        self.base_motion_amp = 0
        self.system.prescribe(self.bearing, vel=0)
        self.system.prescribe(self.base, vel=0)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel', 'acc'))
        self.integ.add_output(dynamics.LoadOutput(self.base.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.iprox, local=True))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.idist[0], local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(
                dynamics.NodeOutput(b.iprox, local=True, deriv=2))