Beispiel #1
0
            return chainer.get_device(numpy)
        else:
            import cupy
            return chainer.get_device((cupy, gpu))

    return chainer.get_device(args.device)

"""
3. Import datasets
  データセット読み込み
   FBGセンサから取得した脈波データ
   参照血糖値
"""

# 1,000datas
data, teach = easy_chainer.load_Data("C:/Users/Owner/Desktop/Normalized/val/val_ebina_day1.xlsx")
data = data.astype(numpy.float32)
teach = teach
print(teach)
print(teach.shape)

# 回帰させるときに必要(分類はint型)
teach = teach.astype(numpy.float32)

id_all = numpy.arange(1, len(teach) + 1, 1).astype(numpy.int32) - 1
# print(id_all)
numpy.random.seed(11)
id_train = numpy.random.choice(id_all, 400, replace=False) #重複なし
print(id_train)
id_test = numpy.delete(id_all, id_train)
print(id_test)
Beispiel #2
0
        if gpu is not None:
            if gpu < 0:
                return chainer.get_device(numpy)
            else:
                import cupy
                return chainer.get_device((cupy, gpu))

        return chainer.get_device(args.device)


"""
3. データセットのインポート
"""
# 1,000datas
data, teach = easy_chainer.load_Data(
    "C:/Users/Owner/Desktop/arteries/excel/black.xlsx")
data = data.astype(numpy.float32)
teach = teach.astype(numpy.float32)
all_data_number = len(teach)
print(teach)
print(teach.shape)

# 教師値にidを割り振る
id_all = numpy.arange(1, len(teach) + 1, 1).astype(numpy.int32) - 1
print(id_all)

# seedは適当
# 訓練に使うデータ数はその時の最適なもので
numpy.random.seed(11)
id_train = numpy.random.choice(id_all, 300, replace=False)
# print(id_train)
Beispiel #3
0
            gpu = int(args.device)

        if gpu is not None:
            if gpu < 0:
                return chainer.get_device(numpy)
            else:
                import cupy
                return chainer.get_device((cupy, gpu))

        return chainer.get_device(args.device)

"""
3. データセットのインポート
"""
# 1,000datas
data, teach = easy_chainer.load_Data("C:/Users/Owner/Desktop/Normalized/val/new2_1.xlsx")
data = data.astype(numpy.float32)
teach = teach
all_data_number = len(teach)
print(teach)
print(teach.shape)

teach = teach.astype(numpy.float32)
# print(data.shape)

# 教師値にidを割り振る
id_all = numpy.arange(1, len(teach) + 1, 1).astype(numpy.int32) - 1
print(id_all)

# seedは適当
# 訓練に使うデータ数はその時の最適なもので
Beispiel #4
0
    if args.gpu is not None:
        gpu = args.gpu
    elif re.match(r'(-|\+|)[0-9]+$', args.device):
        gpu = int(args.device)

    if gpu is not None:
        if gpu < 0:
            return chainer.get_device(numpy)
        else:
            import cupy
            return chainer.get_device((cupy, gpu))

    return chainer.get_device(args.device)
  
  
data, teach = easy_chainer.load_Data("/home/fiber_classifier/Desktop/blood_glucose_fulldata.xlsx")
data = data.astype(numpy.float32)
teach = teach
#print(teach)
print(teach.shape)

# 回帰させるときに必要(分類はint型)
teach = teach.astype(numpy.float32)

id_all = numpy.arange(1, len(teach) + 1, 1).astype(numpy.int32) - 1
print(id_all.shape)
numpy.random.seed(13)
id_train_T = numpy.random.choice(id_all, 300, replace=False) #重複なし
#print(id_train_T.dtype)

id_test = numpy.delete(id_all, id_train_T)