import tensorflow as tf config = tf.ConfigProto(log_device_placement=True) from ecalvegan import generator from ecalvegan import discriminator g_weights = 'params_generator_epoch_' d_weights = 'params_discriminator_epoch_' nb_epochs = 50 batch_size = 128 latent_size = 200 verbose = 'false' poly = [-0.03140347, 1.952197, 0.0827042] print(poly) generator = generator(latent_size) discriminator = discriminator() nb_classes = 2 print('[INFO] Building discriminator') discriminator.summary() #discriminator.load_weights('veganweights/params_discriminator_epoch_019.hdf5') discriminator.compile( #optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1), optimizer=RMSprop(), loss=[ 'binary_crossentropy', 'mean_absolute_percentage_error', 'mean_absolute_percentage_error' ], loss_weights=[10, 0.3, 0.1]
from array import array import time from ecalvegan import generator, discriminator #gStyle.SetOptStat(0) gStyle.SetOptFit(1111) # superimpose fit results c = TCanvas("c", "Ecal/Ep versus Ep for Data and Generated Events", 200, 10, 700, 500) #make nice c.SetGrid() gStyle.SetOptStat(0) #c.SetLogx () Eprof = TProfile("Eprof", "Ratio of Ecal and Ep;Ep;Ecal/Ep", 100, 0, 500) num_events = 1000 latent = 200 g = generator(latent) #gweight = 'gen_rootfit_2p1p1_ep33.hdf5' gweight1 = 'params_generator_epoch_041.hdf5' # 1 gpu gweight2 = 'params_generator_epoch_023.hdf5' # 2 gpu gweight3 = 'params_generator_epoch_011.hdf5' # 4 gpu gweight4 = 'params_generator_epoch_005.hdf5' # 8 gpu gweight5 = '16gpu_gen.hdf5' #'params_generator_epoch_002.hdf5'# 16 gpu g.load_weights(gweight1) gweights = [gweight1, gweight2, gweight3, gweight4, gweight5] label = ['1 gpu', '2 gpu', '4 gpu', '8 gpu', '16 gpu'] scales = [100, 1, 1, 1, 1] color = [4, 2, 3, 6, 7, 8] filename = 'ecal_ratio_multi.pdf' #Get Actual Data #d=h5py.File("/eos/project/d/dshep/LCD/V1/EleEscan/EleEscan_1_1.h5") d = h5py.File("/afs/cern.ch/work/g/gkhattak/public/Ele_v1_1_2.h5", 'r')