Beispiel #1
0
def empirical1():
    f = open('data', 'w')
    datas = [prime_10, prime_20, prime_30, prime_40, prime_50, prime_60, prime_70, prime_80, prime_90,
             prime_100, prime_110, prime_120, prime_150, prime_200, prime_250]
    for ns in datas:
        for n in ns:
            print n,
            start = timeit.default_timer()
            r1 = atkin_morain(n)
            duration = timeit.default_timer() - start
            print duration, len(r1), r1
            f.write(str(n) + ' ' + str(duration) + ' ' + str(len(r1)) + ' ' + str(r1))
    f.close()
Beispiel #2
0
def experiment():
    for i in range(10):
        random_test(300)
    print 'done!'

    print hilbert(-88)
    print hilbert(-123)
    n = 17600773329804421013044164003782933115981289392321878318274335494333497909423750776833564592938824735089487193

    for n in prime_200:
        start = timeit.default_timer()
        r1 = atkin_morain(n)
        print timeit.default_timer() - start, '\n', r1
def experiment():
    for i in range(10):
        random_test(300)
    print 'done!'

    print hilbert(-88)
    print hilbert(-123)
    n = 17600773329804421013044164003782933115981289392321878318274335494333497909423750776833564592938824735089487193

    for n in prime_200:
        start = timeit.default_timer()
        r1 = atkin_morain(n)
        print timeit.default_timer() - start, '\n', r1
def empirical1():
    f = open('data', 'w')
    datas = [
        prime_10, prime_20, prime_30, prime_40, prime_50, prime_60, prime_70,
        prime_80, prime_90, prime_100, prime_110, prime_120, prime_150,
        prime_200, prime_250
    ]
    for ns in datas:
        for n in ns:
            print n,
            start = timeit.default_timer()
            r1 = atkin_morain(n)
            duration = timeit.default_timer() - start
            print duration, len(r1), r1
            f.write(
                str(n) + ' ' + str(duration) + ' ' + str(len(r1)) + ' ' +
                str(r1))
    f.close()
Beispiel #5
0
def prime(n):
    """
    Final Product: Run Miller-Rabin first, use ECPP only when its probable prime.
    Args:
        n: Number to be tested

    Returns:
        certificate if the number is prime, False otherwise.
    """
    if not n > 0:
        raise ValueError("input must be greater than 0")
    repeat = 50
    if miller_rabin(n, repeat):
        cert = atkin_morain(n)
        if not cert:
            raise InconsistencyError("ECPP")
        else:
            return cert
    else:
        return False
def prime(n):
    """
    Final Product: Run Miller-Rabin first, use ECPP only when its probable prime.
    Args:
        n: Number to be tested

    Returns:
        certificate if the number is prime, False otherwise.
    """
    if not n > 0:
        raise ValueError("input must be greater than 0")
    repeat = 50
    if miller_rabin(n, repeat):
        cert = atkin_morain(n)
        if not cert:
            raise InconsistencyError("ECPP")
        else:
            return cert
    else:
        return False
Beispiel #7
0
def large():
    n = 10**499 + 174295123052 + 1
    print atkin_morain(n)
def large():
    n = 10**499 + 174295123052 + 1
    print atkin_morain(n)