Beispiel #1
0
    for b in range(0,len(val_lb)-BSZ+1,BSZ):
        inp.set(val_im[b:b+BSZ,...]); lab.set(val_lb[b:b+BSZ])
        edf.Forward()
        viter = viter + 1;vacc = vacc + acc.top;vloss = vloss + loss.top
    vloss = vloss / viter; vacc = vacc / viter * 100
    print("%09d: #### %d Epochs: Val Loss = %.3e, Accuracy = %.2f%%" % (niter,ep,vloss,vacc))
    if ep == NUM_EPOCH:
        break

    # Shuffle Training Set
    idx = np.random.permutation(len(train_lb))

    # Train one epoch
    for b in batches:
        # Load a batch
        inp.set(train_im[idx[b:b+BSZ],...])
        lab.set(train_lb[idx[b:b+BSZ]])

        edf.Forward()
        avg_loss = avg_loss + loss.top; avg_acc = avg_acc + acc.top;
        niter = niter + 1
        if niter % DISPITER == 0:
            avg_loss = avg_loss / DISPITER; avg_acc = avg_acc / DISPITER * 100
            print("%09d: Training Loss = %.3e, Accuracy = %.2f%%" % (niter,avg_loss,avg_acc))
            avg_loss = 0.; avg_acc = 0.;

        edf.Backward(loss)
        #edf.SGD(lr)
        # Replace previous line with following
        edf.momentum(lr,0.9)
def MyRMSProp(eta, g, epoch=10):
    Log("RMSProp With Learning Rate %.6f Decay Rate:%.4f \n" % (eta, g))
    hidden_dim = 200
    n_vocab = utils.n_vocab
    batch = 50
    parameters = []
    model = 'Models/RMSProp/model_RMSProp_%.6f_%.4f_.pkl' % (eta, g)
    #print(model)
    eta = eta
    decay = 0.9

    inp = edf.Value()

    edf.params = []
    C2V = edf.Param(edf.xavier((n_vocab, hidden_dim)))

    # forget gate
    Wf = edf.Param(edf.xavier((2 * hidden_dim, hidden_dim)))
    bf = edf.Param(np.zeros((hidden_dim)))
    # input gate
    Wi = edf.Param(edf.xavier((2 * hidden_dim, hidden_dim)))
    bi = edf.Param(np.zeros((hidden_dim)))
    # carry cell
    Wc = edf.Param(edf.xavier((2 * hidden_dim, hidden_dim)))
    bc = edf.Param(np.zeros((hidden_dim)))
    # output cell
    Wo = edf.Param(edf.xavier((2 * hidden_dim, hidden_dim)))
    bo = edf.Param(np.zeros((hidden_dim)))

    V = edf.Param(edf.xavier((hidden_dim, n_vocab)))

    parameters.extend([C2V, Wf, bf, Wi, bi, Wc, bc, Wo, bo, V])

    # load the trained model if exist
    if os.path.exists(model):
        with open(model, 'rb') as f:
            p_value = pickle.load(f)
            idx = 0
            for p in p_value:
                parameters[idx].value = p
                idx += 1

    def LSTMCell(xt, h, c):

        f = edf.Sigmoid(edf.Add(edf.VDot(edf.ConCat(xt, h), Wf), bf))
        i = edf.Sigmoid(edf.Add(edf.VDot(edf.ConCat(xt, h), Wi), bi))
        o = edf.Sigmoid(edf.Add(edf.VDot(edf.ConCat(xt, h), Wo), bo))
        c_hat = edf.Tanh(edf.Add(edf.VDot(edf.ConCat(xt, h), Wc), bc))
        c_next = edf.Add(edf.Mul(f, c), edf.Mul(i, c_hat))
        h_next = edf.Mul(o, edf.Tanh(c_next))

        return h_next, c_next

    def BuildModel():

        edf.components = []

        B = inp.value.shape[0]
        T = inp.value.shape[1]
        h = edf.Value(np.zeros((B, hidden_dim)))
        c = edf.Value(np.zeros((B, hidden_dim)))

        score = []

        for t in range(T - 1):

            wordvec = edf.Embed(edf.Value(inp.value[:, t]), C2V)
            xt = edf.Reshape(wordvec, [-1, hidden_dim])
            h_next, c_next = LSTMCell(xt, h, c)
            p = edf.SoftMax(edf.VDot(h_next, V))
            logloss = edf.Reshape(
                edf.LogLoss(edf.Aref(p, edf.Value(inp.value[:, t + 1]))),
                (B, 1))

            if t == 0:
                loss = logloss
            else:
                loss = edf.ConCat(loss, logloss)

            score.append(p)
            h = h_next
            c = c_next

        masks = np.zeros((B, T - 1), dtype=np.int32)
        masks[inp.value[:, 1:] != 0] = 1
        loss = edf.MeanwithMask(loss, edf.Value(masks))

        return loss, score

    def CalPerp(score):

        prob = [p.value for p in score]
        prob = np.transpose(np.stack(prob, axis=0), (1, 0, 2))

        B = prob.shape[0]
        T = prob.shape[1]
        V = prob.shape[2]

        masks = np.zeros((B, T), dtype=np.int32)
        masks[inp.value[:, 1:] != 0] = 1

        prob = prob.reshape(-1)
        idx = np.int32(inp.value[:, 1:].reshape(-1))
        outer_dim = len(idx)
        inner_dim = len(prob) / outer_dim
        pick = np.int32(np.array(range(outer_dim)) * inner_dim + idx)
        prob = prob[pick].reshape(B, T)

        return -np.sum(np.log(prob[np.nonzero(prob * masks)]))

    def Predict(max_step, prefix):

        edf.components = []

        T = max_step
        h = edf.Value(np.zeros((1, hidden_dim)))
        c = edf.Value(np.zeros((1, hidden_dim)))

        prediction = []

        for t in range(T):

            if t < len(prefix):
                pred = edf.Value(prefix[t])
                prediction.append(pred)
            else:
                prediction.append(pred)

            wordvec = edf.Embed(pred, C2V)
            xt = edf.Reshape(wordvec, [-1, hidden_dim])
            h_next, c_next = LSTMCell(xt, h, c)
            p = edf.SoftMax(edf.VDot(h_next, V))
            pred = edf.ArgMax(p)
            h = h_next
            c = c_next

        edf.Forward()

        idx = [pred.value for pred in prediction]
        stop_idx = utils.to_index('}')

        if stop_idx in idx:
            return idx[0:idx.index(stop_idx) + 1]
        else:
            return idx

    def Eval(data, cnt):

        perp = 0.
        avg_loss = 0.
        test_batches = range(0, len(data), batch)
        test_minbatches = [data[idx:idx + batch] for idx in test_batches]

        for minbatch in test_minbatches:

            x_padded = utils.make_mask(minbatch)
            inp.set(x_padded)
            loss, score = BuildModel()
            edf.Forward()
            avg_loss += loss.value
            perp += CalPerp(score)

        perp = np.exp(perp / cnt)
        avg_loss /= len(test_batches)
        return perp, avg_loss

    ############################################### training loop #####################################################

    batches = range(0, len(train_data), batch)
    minbatches = [train_data[idx:idx + batch] for idx in batches]

    epoch = epoch

    # initial Perplexity and loss
    #perp, loss = Eval(valid_data, vacnt)
    #print("Initial: Perplexity: %0.5f Avg loss = %0.5f" % (perp, loss))
    #best_loss = loss
    #prefix = 'the agreements bring'
    #generation = Predict(400, utils.to_idxs(prefix))
    #print("Initial generated sentence ")
    #print (utils.to_string(generation))

    for ep in range(epoch):

        perm = np.random.permutation(len(minbatches)).tolist()
        stime = time()

        for k in range(len(minbatches)):

            minbatch = minbatches[perm[k]]
            x_padded = utils.make_mask(minbatch)
            inp.set(x_padded)
            loss, score = BuildModel()
            edf.Forward()
            edf.Backward(loss)
            edf.GradClip(10)
            edf.RMSProp(eta, g)

        duration = (time() - stime) / 60.

        perp, loss = Eval(valid_data, vacnt)
        Log("Epoch %d: Perplexity: %0.5f Avg loss = %0.5f [%.3f mins]" %
            (ep, perp, loss, duration))

        if (ep == epoch - 1):
            # generate some text given the prefix and trained model
            prefix = 'the agreements bring'
            generation = Predict(400, utils.to_idxs(prefix))
            Log("Epoch %d: generated sentence " % ep)
            Log(utils.to_string(generation))

        #if loss < best_loss:
        # save the model
        best_loss = loss
        f = open(model, 'wb')
        p_value = []
        for p in parameters:
            p_value.append(p.value)
        pickle.dump(p_value, f)

        #Save the hyperparameters
        f_hyper = open("HyperParameters.txt", "a")
        f_hyper.write(
            "RMSProp LearningRate: %.6f Decay_Rate: %.4f Epoch: %d BestLoss: %0.5f Perplexity: %0.5f\n"
            % (eta, g, ep, best_loss, perp))
        if (ep == epoch - 1):
            f_hyper.write("\n\n")
        f_hyper.close()

        Log("\n")