def TrainRBFKernelLocal(self, lmbda=.1, gamma=.5, sampling_factor=1./100.,
                            with_task=False, with_cross_validation=False):
        """
        Fit Kernelized RBF Ridge Regression to the current image subsampled. It downloads the data to
        fit. It uses sklearn.kernel_ridge library.

        :param lmbda: regularization factor
        :param gamma: gamma factor to build the kernel (https://en.wikipedia.org/wiki/Radial_basis_function_kernel)
        :param sampling_factor: percentage of pixels to sample to build the model
        :param with_cross_validation: donwload the data to fit the model with a task
        :param with_task: donwload the data to fit the model with a task

        :return:
        """

        best_params = None
        if not with_cross_validation:
            best_params = {"alpha": lmbda, "gamma":gamma}

        modelo = model_sklearn.KRRModel(best_params=best_params,verbose=1)
        self._BuildDataSet(sampling_factor, normalize=False)

        ds_total = converters.eeFeatureCollectionToPandas(self.datos,
                                                          self.bands_modeling_estimation+["weight"],
                                                          with_task=with_task)

        logger.info("Size of downloaded ds: {}".format(ds_total.shape))

        output_mean,output_std = model_sklearn.fit_model_local(ds_total,modelo,
                                                              self.bands_modeling_estimation_input,
                                                              self.bands_modeling_estimation_output)

        if with_cross_validation:
            logger.info("Best params: {}".format(modelo.named_steps["randomizedsearchcv"].best_params_))
            ridge_kernel = modelo.named_steps["randomizedsearchcv"].best_estimator_
        else:
            ridge_kernel = modelo.named_steps["kernelridge"]

        # Copy model parameters
        self.gamma = ridge_kernel.gamma
        self.lmbda = ridge_kernel.alpha
        self.alpha = ee.Array(ridge_kernel.dual_coef_.tolist())  # column vector
        self.inputs_krr =ee.Array(ridge_kernel.X_fit_.tolist())

        self.distance_krr = kernel.RBFDistance(self.gamma)
        self.kernel_rbf = kernel.Kernel(self.inputs, self.bands_modeling_estimation_input,
                                        self.distance_krr,
                                        weight_property="weight")

        # Copy normalization stuff
        self.inputs_mean = ee.Array(modelo.named_steps["standardscaler"].mean_.tolist())
        self.inputs_std = ee.Array(modelo.named_steps["standardscaler"].scale_.tolist())
        self.outputs_mean = ee.Array(output_mean.tolist())
        self.outputs_std = ee.Array(output_std.tolist())

        return
    def TrainLinearLocal(self,
                         lmbda=.1,
                         sampling_factor=1. / 100.,
                         with_task=False,
                         divide_lmbda_by_n_samples=False,
                         with_cross_validation=False):
        """
        Fit linear ridge regression to the image downloading the data and
        doing the fitting with sklearn.linear_model.

        :param lmbda:
        :param sampling_factor:
        :param divide_lmbda_by_n_samples:
        :param with_task: if the download is done using a task (require pydrive)
        :param with_cross_validation: donwload the data to fit the model with a task
        :return: forecasted image
        :rtype ee.Image
        """
        from ee_ipl_uv import model_sklearn
        self._BuildDataSet(sampling_factor, normalize=False)

        ds_download_pd = converters.eeFeatureCollectionToPandas(
            self.datos,
            self.bands_modeling_estimation + ["weight"],
            with_task=with_task)

        if divide_lmbda_by_n_samples:
            lmbda /= ds_download_pd.shape[0]

        logger.info("Size of downloaded ds: {}".format(ds_download_pd.shape))

        best_params = None
        if not with_cross_validation:
            best_params = {"alpha": lmbda}

        model = model_sklearn.LinearModel(best_params=best_params)

        output_mean, output_std = model_sklearn.fit_model_local(
            ds_download_pd, model, self.bands_modeling_estimation_input,
            self.bands_modeling_estimation_output)

        if with_cross_validation:
            logger.info("Best params: {}".format(model.best_params_))
            model = model.best_estimator_

        self.lmbda = model.alpha

        omega = model.coef_.T * output_std
        intercept = model.intercept_ * output_std + output_mean

        self.omega = ee.Array(omega.tolist())
        self.intercept = ee.Array([intercept.tolist()])

        return