def save_data_model_duration_classify(participator, timesteps, stride, max_freq, min_freq): logger_name = str(participator) + str(timesteps) + str(stride) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info', 'kin']) gal.preprocess_filter(max_freq=max_freq, min_freq=min_freq, low_pass=False) # gal.preprocess_filter_multiple() data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) event_list=['Idle', 'Reach_Phase', 'LoadReach_Phase', 'LoadMaintain_Phase', 'LoadRetract_Phase', 'Retract_Phase'] logger.info( 'running model data') data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.1, 0.1] data = gal.data_event_classify(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, partition_ratio=data_split_ratio, input_dim=32) data_name = ['train', 'validation', 'test'] if not os.path.exists(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq))): os.makedirs(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq))) for i in range(3): x = data[i * 2] y = data[i * 2 + 1] np.save(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), data_name[i]+'_X_ts_{}_st_{}.npy'.format(timesteps, stride)), x) np.save(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), data_name[i]+'_y_ts_{}_st_{}.npy'.format(timesteps, stride)), y)
def predict(model_name, participator, load_weight_from): logger_name = model_name + str(participator) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', 'predict_'+str(f_time)) if not os.path.exists(output_dir): os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'kin']) data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) rnn = EEG_model(None) rnn.set_logger(logger) rnn.select_model(model_name) rnn.load_model_weight(model_name, load_weight_from) logger.info( 'running model data from a generator') data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.2] train_list = np.arange(int(data_len * data_split_ratio[0])) test_list = np.arange(data_len - int(data_len * data_split_ratio[0])) rnn.set_data_description(data_description) generator = gal.data_generator_kin(part=participator, timesteps=10, stride=10) rnn.save_kin_generator(generator=generator,train_list=train_list, test_list=test_list, output_dir=output_dir)
def run_model_duration_generator(model_name, participator, timesteps, stride, nb_epoch, load_weight_from = None): logger_name = model_name + str(participator) + str(timesteps) + str(stride) + str(nb_epoch) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', 'dur_'+str(f_time)) if not os.path.exists(output_dir): os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info']) data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) event_list=['Dur_Reach', 'Dur_LoadReach', 'Dur_LoadMaintain', 'Dur_LoadRetract', 'Dur_Retract'] rnn = EEG_model(event_list) rnn.set_logger(logger) rnn.select_model(model_name) if load_weight_from != None: rnn.load_model_weight(model_name, load_weight_from) logger.info( 'running model data from a generator') data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.1, 0.1] train_list = np.arange(int(data_len * data_split_ratio[0])) validate_list = np.arange(int(data_len * data_split_ratio[1])) test_list = np.arange(data_len - int(data_len * data_split_ratio[0]) - int(data_len * data_split_ratio[1])) for epoch in range(nb_epoch): generator = gal.data_generator_event(part=participator, timesteps=timesteps, stride=stride, event_list=event_list) logger.info( 'epoch : {0}'.format(epoch)) start = time.clock() rnn.run_model_with_generator_event(generator=generator, train_list=train_list, validate_list=validate_list, test_list=test_list) logger.info( 'epoch {0} ran for {1} minutes'.format(epoch, (time.clock() - start)/60)) rnn.set_data_description(data_description) rnn.set_model_config('epoch', nb_epoch) generator = gal.data_generator_event(part=participator, timesteps=timesteps, stride=stride, event_list=event_list) rnn.save_event_generator_classify(generator=generator,train_list=train_list, validate_list=validate_list,test_list=test_list, event_list=event_list, output_dir=output_dir)
def run_model_duration_classify_predict(model_name, participator, timesteps, stride, batch_size, save_by, load_weight_from): logger_name = model_name + str(participator) + str(timesteps) + str(stride) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', 'predict_{0}_P{1}_ts{2}_stride{3}_bs_{4}_weight_{5}_{6}'.format(model_name, participator, timesteps, stride, batch_size,load_weight_from)) if not os.path.exists(output_dir): os.makedirs(output_dir) else: print('same configuation already exists!') return hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info', 'kin']) gal.preprocess_filter(max_freq=50, min_freq=0.2, low_pass=False) data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) event_list=['Idle', 'Reach_Phase', 'LoadReach_Phase', 'LoadMaintain_Phase', 'LoadRetract_Phase', 'Retract_Phase'] rnn = EEG_model(event_list) rnn.set_logger(logger) rnn.select_model(model_name) rnn.load_model_weight(model_name, load_weight_from) logger.info('loaded weight') logger.info( 'running model data') data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.1, 0.1] data = gal.data_event_classify(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, partition_ratio=data_split_ratio, input_dim=32) rnn.set_data_description(data_description) rnn.save_event_classify(data=data, event_list=event_list, output_dir=output_dir)
def get_data_multiple_filter(participator, timesteps, stride): logger_name = 'data' + str(participator) + str(timesteps) + str(stride) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', '{0}_P{1}_ts{2}_stride{3}'.format('data', participator, timesteps, stride)) os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info', 'kin']) gal.preprocess_filter_multiple() gal.save_individual_eeg()
def run_model_event_range_generator(model_name, participator, timesteps, stride, nb_epoch, event_range, load_weight_from = None): logger = logging.getLogger() f_time = datetime.datetime.today() output_dir = os.path.join('output', str(f_time)) if not os.path.exists(output_dir): os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data() data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) event_list = ['tHandStart', 'tFirstDigitTouch', 'tBothStartLoadPhase', 'tLiftOff', 'tReplace', 'tBothReleased', 'tHandStop'] rnn = EEG_model(event_list) rnn.set_logger(logger) rnn.select_model(model_name) if load_weight_from != None: rnn.load_model_weight(model_name, load_weight_from) logger.info( 'running model data from a generator') data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.1, 0.1] train_list = np.arange(int(data_len * data_split_ratio[0])) validate_list = np.arange(int(data_len * data_split_ratio[1])) test_list = np.arange(data_len - int(data_len * data_split_ratio[0]) - int(data_len * data_split_ratio[1])) for epoch in range(nb_epoch): generator = gal.X_y_part_generator(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, event_range=event_range) logger.info( 'epoch : {0}'.format(epoch)) start = time.clock() rnn.run_model_with_generator_event(generator=generator, train_list=train_list, validate_list=validate_list, test_list=test_list) logger.info( 'epoch {0} ran for {1} minutes'.format(epoch, (time.clock() - start)/60)) rnn.set_data_description(data_description) rnn.set_model_config('epoch', nb_epoch) generator = gal.X_y_part_generator(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, event_range=event_range) rnn.save_event(generator=generator,train_list=train_list, validate_list=validate_list,test_list=test_list, event_list=event_list, output_dir=output_dir)
def run_model_duration(model_name, participator, timesteps, stride, nb_epoch, load_weight_from = None): logger_name = model_name + str(participator) + str(timesteps) + str(stride) + str(nb_epoch) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', 'dur_'+str(f_time)) if not os.path.exists(output_dir): os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info']) data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) #event_list=['Dur_Reach', 'Dur_Preload', 'Dur_LoadPhase', 'Dur_Release', 'Dur_Retract'] event_list=['Dur_Reach', 'Dur_LoadReach', 'Dur_LoadMaintain', 'Dur_LoadRetract', 'Dur_Retract'] rnn = EEG_model(event_list) rnn.set_logger(logger) rnn.select_model(model_name) if load_weight_from != None: rnn.load_model_weight(model_name, load_weight_from) logger.info( 'running model data as a whole') data_split_ratio = [0.8, 0.1, 0.1] data = gal.data_event(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, partition_ratio=data_split_ratio, input_dim=32) loss_train, loss_val, loss_test = rnn.run_model_event(data=data, nb_epoch = nb_epoch) with open(os.path.join(output_dir, 'train_loss.json'), 'w') as f: json.dump(loss_train, f) with open(os.path.join(output_dir, 'validate_loss.json'), 'w') as f: json.dump(loss_val, f) with open(os.path.join(output_dir, 'test_loss.json'), 'w') as f: json.dump(loss_test, f) rnn.set_data_description(data_description) rnn.set_model_config('epoch', nb_epoch) generator = gal.data_generator_event(part=participator, timesteps=timesteps, stride=stride, event_list=event_list) rnn.save_event(data=data, event_list=event_list, output_dir=output_dir)
def evaluate(self, X, y): pred = self.clf.predict(X) accuracy = accuracy_score(y, pred) cm = confusion_matrix(y, pred) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] return accuracy, cm_normalized nb_epoch = 100 participator = 1 gal = GAL_data() gal.load_data(load_list=['eeg', 'info']) data_description = gal.get_data_description() event_list=['Idle', 'Recognition_Phase', 'Reach_Phase', 'LoadReach_Phase', 'LoadMaintain_Phase', 'LoadRetract_Phase', 'Retract_Phase'] data_len=gal.part_data_count[participator] data_split_ratio = [0.8, 0.1, 0.1] train_list = np.arange(int(data_len * data_split_ratio[0])) validate_list = np.arange(int(data_len * data_split_ratio[1])) test_list = np.arange(data_len - int(data_len * data_split_ratio[0]) - int(data_len * data_split_ratio[1])) for epoch in range(nb_epoch): generator = gal.data_generator_event_classify(part=participator, timesteps=timesteps, stride=stride, event_list=event_list) def run(data_list): for _ in data_list:
def run_model_kin_generator(model_name, participator, timesteps, stride, nb_epoch, patience_limit, loss_delta_limit, load_weight_from = None): logger_name = model_name + str(participator) + str(timesteps) + str(stride) + str(nb_epoch) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() output_dir = os.path.join('output', 'kin_'+str(f_time)) if not os.path.exists(output_dir): os.makedirs(output_dir) hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'kin']) gal.preprocess_kin() data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) rnn = EEG_model(None) rnn.set_logger(logger) rnn.select_model(model_name) if load_weight_from != None: rnn.load_model_weight(model_name, load_weight_from) logger.info( 'running model data from a generator') data_len=gal.part_data_count[participator] data_split_ratio = [0.8,0.2] train_list = np.arange(int(data_len * data_split_ratio[0])) test_list = np.arange(data_len - int(data_len * data_split_ratio[0])) loss_train_df = pd.DataFrame(columns = ['epoch', 'loss']) loss_test_df = pd.DataFrame(columns = ['epoch', 'loss']) patience = 0 for epoch in range(nb_epoch): generator = gal.data_generator_kin(part=participator, timesteps=timesteps, stride=stride) logger.info( 'epoch : {0}'.format(epoch)) start = time.clock() train_loss, test_loss = rnn.run_model_with_generator_kin(generator=generator, train_list=train_list, test_list=test_list) loss_train_df.loc[epoch, ['epoch', 'loss']] = [epoch+1, train_loss] loss_test_df.loc[epoch, ['epoch', 'loss']] = [epoch+1, test_loss] if epoch == 0: prev_train_loss = train_loss logger.info( 'epoch {0} ran for {1} minutes'.format(epoch, (time.clock() - start)/60)) loss_delta = abs(prev_train_loss - train_loss) / prev_train_loss * 100 if loss_delta < loss_delta_limit: patience = patience + 1 if patience > patience_limit: logger.info('training stopped at epoch {0} due to patience threshold'.format(epoch)) break else: patience = patience - 1 loss_train_df.to_csv(os.path.join(output_dir, 'train_loss.csv'), index=False) loss_test_df.to_csv(os.path.join(output_dir, 'test_loss.csv'), index=False) rnn.set_data_description(data_description) rnn.set_model_config('epoch', nb_epoch) generator = gal.data_generator_kin(part=participator, timesteps=timesteps, stride = stride) rnn.save_kin_generator(generator=generator,train_list=train_list, test_list=test_list, output_dir=output_dir)
def check_time(): gal = GAL_data() gal.load_data() gal.examine_time()
def run_model_duration_classify(model_name, participator, timesteps, stride, max_freq, min_freq, nb_epoch, batch_size, save_by, multi_filter = False, load_weight_from = None, load_data_from= None): logger_name = model_name + str(participator) + str(timesteps) + str(stride) + str(nb_epoch) + str(load_weight_from) logger = logging.getLogger(logger_name) # so that no multiple loggers input the same data f_time = datetime.datetime.today() if load_weight_from != None: load_weight_from_str = load_weight_from.split('/') output_dir = os.path.join('output', '{0}_P{1}_ts{2}_stride{3}_ep{4}_bs_{5}_weight_{6}_maxmin_{7}_saveby_{8}'.format(model_name, participator, timesteps, stride, nb_epoch, batch_size, load_weight_from_str, '{}_{}'.format(max_freq, min_freq), save_by)) else: output_dir = os.path.join('output', '{0}_P{1}_ts{2}_stride{3}_ep{4}_bs_{5}_maxmin_{6}_saveby_{7}'.format(model_name, participator, timesteps, stride, nb_epoch, batch_size, '{}_{}'.format(max_freq, min_freq), save_by)) if not os.path.exists(output_dir): os.makedirs(output_dir) else: print('same configuation already exists!') return if load_data_from != None: assert timesteps == load_data_from[0], 'timesteps does not match' assert stride == load_data_from[1], 'stride does not match' hdlr = logging.FileHandler(os.path.join(output_dir, 'rnn.log')) logger.addHandler(hdlr) console_handler = logging.StreamHandler() logger.addHandler(console_handler) logger.setLevel(logging.INFO) event_list=['Idle', 'Reach_Phase', 'LoadReach_Phase', 'LoadMaintain_Phase', 'LoadRetract_Phase', 'Retract_Phase'] rnn = EEG_model(event_list) rnn.set_logger(logger) rnn.select_model(model_name) if load_weight_from != None: rnn.load_model_weight(model_name, load_weight_from) logger.info('loaded weight') logger.info( 'running model data') data_split_ratio = [0.7, 0.2, 0.1] if load_data_from == None: gal = GAL_data() gal.set_logger(logger) gal.load_data(load_list=['eeg', 'info', 'kin']) if multi_filter ==True: gal.preprocess_filter_multiple() else: gal.preprocess_filter(max_freq=max_freq, min_freq=min_freq, low_pass=False) data_description = gal.get_data_description() participator = participator logger.info('participator : {0}'.format(participator)) data = gal.data_event_classify(part=participator, timesteps=timesteps, stride=stride, event_list=event_list, partition_ratio=data_split_ratio, input_dim=32) else: data_description = dict() data_description['participator'] = participator data_description['timesteps'] = timesteps data_description['stride'] = stride data_description['event_list'] = event_list data_description['preprocess_filter'] = '{}_{}'.format(max_freq, min_freq) ts = load_data_from[0] st = load_data_from[1] data = list() data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'train_X_ts_{}_st_{}.npy'.format(ts, st)))) data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'train_y_ts_{}_st_{}.npy'.format(ts, st)))) data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'validation_X_ts_{}_st_{}.npy'.format(ts, st)))) data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'validation_y_ts_{}_st_{}.npy'.format(ts, st)))) data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'test_X_ts_{}_st_{}.npy'.format(ts, st)))) data.append(np.load(os.path.join('data', 'numpy_binary', 'maxfreq_{}_minfreq_{}'.format(max_freq, min_freq), 'test_y_ts_{}_st_{}.npy'.format(ts, st)))) for i in range(nb_epoch/save_by): loss_train, loss_test = rnn.run_model_event(data=data, nb_epoch = save_by, batch_size=batch_size) output_dir_temp = os.path.join(output_dir, str(i)) os.makedirs(output_dir_temp) df_loss = pd.DataFrame() df_loss['acc'] = loss_train.history['acc'] df_loss['loss'] = loss_train.history['loss'] df_loss.to_csv(os.path.join(output_dir_temp, 'train_loss_acc.csv')) rnn.set_data_description(data_description) rnn.set_model_config('epoch', nb_epoch/save_by * i) rnn.save_event_classify(data=data, event_list=event_list, output_dir=output_dir_temp)
def read_save_raw(): gal = GAL_data() gal.set_logger(logging.getLogger()) gal.read_raw_data() gal.save_raw_data()