Beispiel #1
0
def test_pickle():
    ds = datasets.get_uts()

    ds_2 = load.unpickle(file_path('uts-py2.pickle'))
    assert_dataobj_equal(ds_2, ds)
    ds_3 = load.unpickle(file_path('uts-py3.pickle'))
    assert_dataobj_equal(ds_3, ds)
Beispiel #2
0
def test_melt_ndvar():
    "Test table.melt_ndvar()"
    ds = datasets.get_uts(True)
    ds = ds.sub("A == 'a1'")

    lds = table.melt_ndvar('uts', ds=ds)
    ok_('time' in lds)
    assert_is_instance(lds['time'], Var)
    assert_array_equal(np.unique(lds['time'].x), ds['uts'].time)

    # no ds
    lds2 = table.melt_ndvar(ds['uts'])
    assert_dataobj_equal(lds2['uts'], lds['uts'])

    # sensor
    lds = table.melt_ndvar("utsnd.summary(time=(0.1, 0.2))",
                           ds=ds,
                           varname='summary')
    eq_(set(lds['sensor'].cells), set(ds['utsnd'].sensor.names))

    # NDVar out
    lds = table.melt_ndvar("utsnd", 'sensor', ds=ds)
    ok_('utsnd' in lds)
    assert_is_instance(lds['utsnd'], NDVar)
    assert_dataobj_equal(lds[:ds.n_cases, 'utsnd'],
                         ds.eval("utsnd.sub(sensor='0')"))

    # more than one dimensions
    assert_raises(ValueError, table.melt_ndvar, 'utsnd', ds=ds)
Beispiel #3
0
def test_melt_ndvar():
    "Test table.melt_ndvar()"
    ds = datasets.get_uts(True)
    ds = ds.sub("A == 'a1'")

    lds = table.melt_ndvar("uts", ds=ds)
    ok_("time" in lds)
    ok_(isvar(lds["time"]))
    eq_(set(lds["time"].x), set(ds["uts"].time.x))

    # no ds
    lds2 = table.melt_ndvar(ds["uts"])
    assert_dataobj_equal(lds2["uts"], lds["uts"])

    # sensor
    lds = table.melt_ndvar("utsnd.summary(time=(0.1, 0.2))", ds=ds, varname="summary")
    eq_(set(lds["sensor"].cells), set(ds["utsnd"].sensor.names))

    # NDVar out
    lds = table.melt_ndvar("utsnd", "sensor", ds=ds)
    ok_("utsnd" in lds)
    ok_(isndvar(lds["utsnd"]))
    assert_dataobj_equal(lds[: ds.n_cases, "utsnd"], ds.eval("utsnd.sub(sensor='0')"))

    # more than one dimensions
    assert_raises(ValueError, table.melt_ndvar, "utsnd", ds=ds)
Beispiel #4
0
def test_ttest_ind():
    "Test testnd.ttest_ind()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_ind('uts', 'A', 'a1', 'a0', ds=ds)
    eq_(repr(res), "<ttest_ind 'uts', 'A', 'a1' (n=30), 'a0' (n=30)>")
    assert_less(res.p_uncorrected.min(), 0.05)
    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    eq_(repr(res_), "<ttest_ind 'uts', 'A', 'a1' (n=30), 'a0' (n=30)>")
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # cluster
    res = testnd.ttest_ind('uts', 'A', 'a1', 'a0', ds=ds, tail=1, samples=1)
    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # nd
    res = testnd.ttest_ind('utsnd',
                           'A',
                           'a1',
                           'a0',
                           ds=ds,
                           pmin=0.05,
                           samples=2)
    eq_(res._cdist.n_clusters, 10)

    # zero variance
    ds['utsnd'].x[:, 1, 10] = 0.
    assert_raises(ZeroVariance, testnd.ttest_ind, 'utsnd', 'A', ds=ds)
Beispiel #5
0
def test_corr():
    "Test testnd.corr()"
    ds = datasets.get_uts(True)

    # add correlation
    Y = ds['Y']
    utsnd = ds['utsnd']
    utsnd.x[:, 3:5, 50:65] += Y.x[:, None, None]

    res = testnd.corr('utsnd', 'Y', ds=ds)
    repr(res)
    for s, t in product('01234', (0.1, 0.2, 0.35)):
        target = test.Correlation(utsnd.sub(sensor=s, time=t), Y).r
        assert_almost_equal(res.r.sub(sensor=s, time=t), target, 10)
    res = testnd.corr('utsnd', 'Y', 'rm', ds=ds)
    repr(res)
    res = testnd.corr('utsnd', 'Y', ds=ds, samples=10, pmin=0.05)
    repr(res)
    res = testnd.corr('utsnd', 'Y', ds=ds, samples=10, tfce=True)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)
    assert_dataobj_equal(res.p, res_.p)
Beispiel #6
0
def test_t_contrast():
    ds = datasets.get_uts()

    # simple contrast
    res = testnd.t_contrast_rel('uts', 'A', 'a1>a0', 'rm', ds=ds, samples=10,
                                pmin=0.05)
    repr(res)
    res_ = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_array_equal(res.t.x, res_.t.x)
    assert_in('samples', repr(res))

    # complex contrast
    res = testnd.t_contrast_rel('uts', 'A%B', 'min(a0|b0>a1|b0, a0|b1>a1|b1)',
                                'rm', ds=ds, samples=10, pmin=0.05)
    res_b0 = testnd.ttest_rel('uts', 'A%B', ('a0', 'b0'), ('a1', 'b0'), 'rm',
                              ds=ds)
    res_b1 = testnd.ttest_rel('uts', 'A%B', ('a0', 'b1'), ('a1', 'b1'), 'rm',
                              ds=ds)
    assert_array_equal(res.t.x, np.min([res_b0.t.x, res_b1.t.x], axis=0))

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p, res_.p)

    # contrast with "*"
    res = testnd.t_contrast_rel('uts', 'A%B', 'min(a1|b0>a0|b0, a1|b1>a0|b1)',
                                'rm', ds=ds, tail=1)
Beispiel #7
0
def test_t_contrast():
    ds = datasets.get_uts()

    # simple contrast
    res = testnd.t_contrast_rel('uts', 'A', 'a1>a0', 'rm', ds=ds, samples=10,
                                pmin=0.05)
    repr(res)
    res_ = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_array_equal(res.t.x, res_.t.x)
    assert_in('samples', repr(res))

    # complex contrast
    res = testnd.t_contrast_rel('uts', 'A%B', 'min(a0|b0>a1|b0, a0|b1>a1|b1)',
                                'rm', ds=ds, samples=10, pmin=0.05)
    res_b0 = testnd.ttest_rel('uts', 'A%B', ('a0', 'b0'), ('a1', 'b0'), 'rm',
                              ds=ds)
    res_b1 = testnd.ttest_rel('uts', 'A%B', ('a0', 'b1'), ('a1', 'b1'), 'rm',
                              ds=ds)
    assert_array_equal(res.t.x, np.min([res_b0.t.x, res_b1.t.x], axis=0))

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p, res_.p)

    # contrast with "*"
    res = testnd.t_contrast_rel('uts', 'A%B', 'min(a1|b0>a0|b0, a1|b1>a0|b1)',
                                'rm', ds=ds, tail=1)
Beispiel #8
0
def test_ttest_ind():
    "Test testnd.ttest_ind()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_ind('uts', 'A', 'a1', 'a0', ds=ds)
    repr(res)
    assert_less(res.p_uncorrected.min(), 0.05)
    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # cluster
    res = testnd.ttest_ind('uts', 'A', 'a1', 'a0', ds=ds, tail=1, samples=1)
    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # nd
    res = testnd.ttest_ind('utsnd', 'A', 'a1', 'a0', ds=ds, pmin=0.05, samples=2)
    eq_(res._cdist.n_clusters, 10)
Beispiel #9
0
def test_samples_sesssions():
    set_log_level('warning', 'mne')
    SampleExperiment = import_attr(sample_path / 'sample_experiment_sessions.py', 'SampleExperiment')
    tempdir = TempDir()
    datasets.setup_samples_experiment(tempdir, 2, 1, 2)

    root = join(tempdir, 'SampleExperiment')
    e = SampleExperiment(root)
    # bad channels
    e.make_bad_channels('0111')
    eq_(e.load_bad_channels(), ['MEG 0111'])
    eq_(e.load_bad_channels(session='sample2'), [])
    e.show_bad_channels()
    e.merge_bad_channels()
    eq_(e.load_bad_channels(session='sample2'), ['MEG 0111'])
    e.show_bad_channels()

    # rejection
    for _ in e:
        for epoch in ('target1', 'target2'):
            e.set(epoch=epoch)
            e.make_rej(auto=2e-12)

    ds = e.load_evoked('R0000', epoch='target2')
    e.set(session='sample1')
    ds2 = e.load_evoked('R0000')
    assert_dataobj_equal(ds2, ds)

    # super-epoch
    ds1 = e.load_epochs(epoch='target1')
    ds2 = e.load_epochs(epoch='target2')
    ds_super = e.load_epochs(epoch='super')
    assert_dataobj_equal(ds_super['meg'], combine((ds1['meg'], ds2['meg'])))
Beispiel #10
0
def test_result():
    "Test boosting results"
    ds = datasets._get_continuous()

    # convolve function
    y = convolve([ds['h1'], ds['h2']], [ds['x1'], ds['x2']])
    y.name = 'y'
    assert_dataobj_equal(y, ds['y'])

    # test prediction with res.h and res.h_scaled
    res = boosting(ds['y'], ds['x1'], 0, 1)
    y1 = convolve(res.h_scaled, ds['x1'])
    x_scaled = ds['x1'] / res.x_scale
    y2 = convolve(res.h, x_scaled)
    y2 *= res.y_scale
    y2 += y1.mean() - y2.mean()  # mean can't be reconstructed
    assert_dataobj_equal(y1, y2, decimal=12)

    # test NaN checks  (modifies data)
    ds['x2'].x[1, 50] = np.nan
    assert_raises(ValueError, boosting, ds['y'], ds['x2'], 0, .5)
    assert_raises(ValueError, boosting, ds['y'], ds['x2'], 0, .5, False)
    ds['x2'].x[1, :] = 1
    assert_raises(ValueError, boosting, ds['y'], ds['x2'], 0, .5)
    ds['y'].x[50] = np.nan
    assert_raises(ValueError, boosting, ds['y'], ds['x1'], 0, .5)
    assert_raises(ValueError, boosting, ds['y'], ds['x1'], 0, .5, False)
Beispiel #11
0
def test_melt_ndvar():
    "Test table.melt_ndvar()"
    ds = datasets.get_uts(True)
    ds = ds.sub("A == 'a1'")

    lds = table.melt_ndvar('uts', ds=ds)
    ok_('time' in lds)
    ok_(isvar(lds['time']))
    eq_(set(lds['time'].x), set(ds['uts'].time.x))

    # no ds
    lds2 = table.melt_ndvar(ds['uts'])
    assert_dataobj_equal(lds2['uts'], lds['uts'])

    # sensor
    lds = table.melt_ndvar("utsnd.summary(time=(0.1, 0.2))", ds=ds, varname='summary')
    eq_(set(lds['sensor'].cells), set(ds['utsnd'].sensor.names))

    # NDVar out
    lds = table.melt_ndvar("utsnd", 'sensor', ds=ds)
    ok_('utsnd' in lds)
    ok_(isndvar(lds['utsnd']))
    assert_dataobj_equal(lds[:ds.n_cases, 'utsnd'], ds.eval("utsnd.sub(sensor='0')"))

    # more than one dimensions
    assert_raises(ValueError, table.melt_ndvar, 'utsnd', ds=ds)
Beispiel #12
0
def test_ttest_rel():
    "Test testnd.ttest_rel()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                           ds=ds, samples=100)
    eq_(repr(res), "<ttest_rel 'uts', 'A x B', ('a1', 'b1'), ('a0', 'b0'), "
                   "'rm' (n=15), samples=100, p >= 0.000>")

    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # collapsing cells
    res2 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_less(res2.p_uncorrected.min(), 0.05)
    assert_equal(res2.n, res.n)

    # reproducibility
    res3 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res3.find_clusters(maps=True), res.clusters)
    testnd.configure(0)
    res4 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res4.find_clusters(maps=True), res.clusters)
    testnd.configure(-1)
    sds = ds.sub("B=='b0'")
    # thresholded, UTS
    testnd.configure(0)
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # thresholded, UTSND
    testnd.configure(0)
    res0 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # TFCE, UTS
    testnd.configure(0)
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    tgt = res0.compute_probability_map()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    assert_dataobj_equal(res1.compute_probability_map(), tgt)
Beispiel #13
0
def test_ttest_rel():
    "Test testnd.ttest_rel()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                           ds=ds, samples=100)
    repr(res)

    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # collapsing cells
    res2 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_less(res2.p_uncorrected.min(), 0.05)
    assert_equal(res2.n, res.n)

    # reproducibility
    res3 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res3.find_clusters(maps=True), res.clusters)
    testnd.configure(0)
    res4 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res4.find_clusters(maps=True), res.clusters)
    testnd.configure(-1)
    sds = ds.sub("B=='b0'")
    # thresholded, UTS
    testnd.configure(0)
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # thresholded, UTSND
    testnd.configure(0)
    res0 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # TFCE, UTS
    testnd.configure(0)
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    tgt = res0.compute_probability_map()
    testnd.configure(-1)
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    assert_dataobj_equal(res1.compute_probability_map(), tgt)
Beispiel #14
0
def test_ndvar_index(x, dimname, index, a_index, index_repr=True):
    "Helper function for test_ndvar_indexing"
    ax = x.get_axis(dimname)
    index_prefix = (full_slice,) * ax
    if dimname != 'case':
        dim = x.get_dim(dimname)
        assert_equal(dim.dimindex(index), a_index)
        if index_repr is not False:
            if index_repr is True:
                index_repr = index
            eq_(dim._index_repr(a_index), index_repr)
    x_array = x.x[index_prefix + (a_index,)]
    x1 = x.sub(**{dimname: index})
    x2 = x[index_prefix + (index,)]
    assert_array_equal(x1.x, x_array)
    assert_dataobj_equal(x2, x1)
Beispiel #15
0
def test_dataset_indexing():
    """Test Dataset indexing"""
    ds = datasets.get_uv()

    # indexing values
    eq_(ds['A', 1], ds['A'][1])
    eq_(ds[1, 'A'], ds['A'][1])

    # indexing variables
    assert_dataobj_equal(ds[:, 'A'], ds['A'])
    assert_dataobj_equal(ds['A', :], ds['A'])
    assert_dataobj_equal(ds[:10, 'A'], ds['A'][:10])
    assert_dataobj_equal(ds['A', :10], ds['A'][:10])

    # new Dataset through indexing
    ds2 = Dataset()
    ds2['A'] = ds['A']
    assert_dataset_equal(ds[('A',)], ds2)
    ds2['B'] = ds['B']
    assert_dataset_equal(ds['A', 'B'], ds2)
    assert_dataset_equal(ds[('A', 'B'), :10], ds2[:10])
    assert_dataset_equal(ds[:10, ('A', 'B')], ds2[:10])

    # assigning value
    ds[2, 'A'] = 'hello'
    eq_(ds[2, 'A'], 'hello')
    ds['A', 2] = 'not_hello'
    eq_(ds[2, 'A'], 'not_hello')

    # assigning new factor
    ds['C', :] = 'c'
    ok_(np.all(ds.eval("C == 'c'")))

    # assigning new Var
    ds['D1', :] = 5.
    ds[:, 'D2'] = 5.
    assert_array_equal(ds['D1'], 5)
    assert_array_equal(ds['D2'], 5)

    # test illegal names
    f = Factor('aaabbb')
    assert_raises(ValueError, ds.__setitem__, '%dsa', f)
    assert_raises(ValueError, ds.__setitem__, '432', f)
    assert_raises(ValueError, ds.__setitem__, ('%dsa', slice(None)), 'value')
    assert_raises(ValueError, ds.__setitem__, (slice(None), '%dsa'), 'value')
    assert_raises(ValueError, ds.__setitem__, ('432', slice(None)), 4.)
    assert_raises(ValueError, ds.__setitem__, (slice(None), '432'), 4.)

    # deleting items
    del ds['A']
    ok_('A' not in ds)
    assert_raises(KeyError, ds.__getitem__, 'A')
    del ds['B', 'rm']
    ok_('B' not in ds and 'rm' not in ds)
Beispiel #16
0
def test_dataset_indexing():
    """Test Dataset indexing"""
    ds = datasets.get_uv()

    # indexing values
    eq_(ds['A', 1], ds['A'][1])
    eq_(ds[1, 'A'], ds['A'][1])

    # indexing variables
    assert_dataobj_equal(ds[:, 'A'], ds['A'])
    assert_dataobj_equal(ds['A', :], ds['A'])
    assert_dataobj_equal(ds[:10, 'A'], ds['A'][:10])
    assert_dataobj_equal(ds['A', :10], ds['A'][:10])

    # new Dataset through indexing
    ds2 = Dataset()
    ds2['A'] = ds['A']
    assert_dataset_equal(ds[('A',)], ds2)
    ds2['B'] = ds['B']
    assert_dataset_equal(ds['A', 'B'], ds2)
    assert_dataset_equal(ds[('A', 'B'), :10], ds2[:10])
    assert_dataset_equal(ds[:10, ('A', 'B')], ds2[:10])

    # assigning value
    ds[2, 'A'] = 'hello'
    eq_(ds[2, 'A'], 'hello')
    ds['A', 2] = 'not_hello'
    eq_(ds[2, 'A'], 'not_hello')

    # assigning new factor
    ds['C', :] = 'c'
    ok_(np.all(ds.eval("C == 'c'")))

    # assigning new Var
    ds['D1', :] = 5.
    ds[:, 'D2'] = 5.
    assert_array_equal(ds['D1'], 5)
    assert_array_equal(ds['D2'], 5)

    # test illegal names
    f = Factor('aaabbb')
    assert_raises(ValueError, ds.__setitem__, '%dsa', f)
    assert_raises(ValueError, ds.__setitem__, '432', f)
    assert_raises(ValueError, ds.__setitem__, ('%dsa', slice(None)), 'value')
    assert_raises(ValueError, ds.__setitem__, (slice(None), '%dsa'), 'value')
    assert_raises(ValueError, ds.__setitem__, ('432', slice(None)), 4.)
    assert_raises(ValueError, ds.__setitem__, (slice(None), '432'), 4.)

    # deleting items
    del ds['A']
    ok_('A' not in ds)
    assert_raises(KeyError, ds.__getitem__, 'A')
    del ds['B', 'rm']
    ok_('B' not in ds and 'rm' not in ds)
Beispiel #17
0
def test_corr():
    "Test testnd.corr()"
    ds = datasets.get_uts(True)

    # add correlation
    Y = ds['Y']
    utsnd = ds['utsnd']
    utsnd.x[:, 3:5, 50:65] += Y.x[:, None, None]

    res = testnd.corr('utsnd', 'Y', 'rm', ds=ds)
    repr(res)
    res = testnd.corr('utsnd', 'Y', 'rm', ds=ds, samples=10, pmin=0.05)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)
    assert_dataobj_equal(res.p, res_.p)
Beispiel #18
0
def test_corr():
    "Test testnd.corr()"
    ds = datasets.get_uts(True)

    # add correlation
    Y = ds['Y']
    utsnd = ds['utsnd']
    utsnd.x[:, 3:5, 50:65] += Y.x[:, None, None]

    res = testnd.corr('utsnd', 'Y', 'rm', ds=ds)
    repr(res)
    res = testnd.corr('utsnd', 'Y', 'rm', ds=ds, samples=10, pmin=0.05)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)
    assert_dataobj_equal(res.p, res_.p)
Beispiel #19
0
def test_interaction():
    "Test Interaction"
    ds = datasets.get_uv()
    A = ds['A']
    B = ds['B']
    i = A % B
    # eq for sequence
    assert_array_equal(i == A % B, True)
    assert_array_equal(i == B % A, False)
    assert_array_equal(i == A, False)
    assert_array_equal(i == ds['fltvar'], False)
    assert_array_equal(ds.eval("A%B") == Factor(ds['A']) % B, True)
    # eq for element
    for a, b in product(A.cells, B.cells):
        assert_array_equal(i == (a, b), np.logical_and(A == a, B == b))

    # Interaction.as_factor()
    a = Factor('aabb')
    i = a % Factor('cdcd')
    assert_dataobj_equal(i.as_factor(), Factor(['a c', 'a d', 'b c', 'b d']))
    i = a % Factor(['c', '', 'c', ''])
    assert_dataobj_equal(i.as_factor(), Factor(['a c', 'a', 'b c', 'b']))

    # pickling
    ip = pickle.loads(pickle.dumps(i))
    assert_dataobj_equal(ip, i)
Beispiel #20
0
def test_test_experiment():
    "Test event labeling with the EventExperiment subclass of MneExperiment"
    e = EventExperiment()

    # test defaults
    eq_(e.get('session'), 'cheese')
    eq_(e.get('model'), 'name')

    # test event labeling
    ds = e.label_events(gen_triggers())
    name = Factor([e.variables['name'][t] for t in TRIGGERS], name='name')
    assert_dataobj_equal(ds['name'], name)
    tgt = ds['trigger'].as_factor(e.variables['backorder'], 'backorder')
    assert_dataobj_equal(ds['backorder'], tgt)
    tgt = ds['trigger'].as_factor(e.variables['taste'], 'taste')
    assert_dataobj_equal(ds['taste'], tgt)
    assert_array_equal(ds['i_start'], I_START)
    assert_array_equal(ds['subject'] == SUBJECT, True)

    # tests disabled (trigger-shift applied in load_events):
    # ---
    #  assert_equal(ds['i_start'], I_START + round(0.03 * SAMPLINGRATE))
    # # test without trigger shift
    # e.trigger_shift = 0
    # ds = e.label_events(gen_triggers())
    # assert_equal(ds['i_start'], I_START)
    # # trigger shift dict
    # e2 = EventExperimentTriggerShiftDict('', False)
    # ds = e2.label_events(gen_triggers())
    # assert_equal(ds['i_start'], I_START + round(0.04 * SAMPLINGRATE))

    # epochs
    eq_(e._epochs['cheese'].tmin, -0.2)
    eq_(e._epochs['cheese-leicester'].tmin, -0.1)
    eq_(e._epochs['cheese-tilsit'].tmin, -0.2)
Beispiel #21
0
def test_interaction():
    "Test Interaction"
    ds = datasets.get_uv()
    A = ds['A']
    B = ds['B']
    i = A % B
    # eq for sequence
    assert_array_equal(i == A % B, True)
    assert_array_equal(i == B % A, False)
    assert_array_equal(i == A, False)
    assert_array_equal(i == ds['fltvar'], False)
    assert_array_equal(ds.eval("A%B") == Factor(ds['A']) % B, True)
    # eq for element
    for a, b in product(A.cells, B.cells):
        assert_array_equal(i == (a, b), np.logical_and(A == a, B == b))

    # Interaction.as_factor()
    a = Factor('aabb')
    i = a % Factor('cdcd')
    assert_dataobj_equal(i.as_factor(), Factor(['a c', 'a d', 'b c', 'b d']))
    i = a % Factor(['c', '', 'c', ''])
    assert_dataobj_equal(i.as_factor(), Factor(['a c', 'a', 'b c', 'b']))

    # pickling
    ip = pickle.loads(pickle.dumps(i))
    assert_dataobj_equal(ip, i)
Beispiel #22
0
def test_ttest_1samp():
    "Test testnd.ttest_1samp()"
    ds = datasets.get_uts(True)

    # no clusters
    res0 = testnd.ttest_1samp('uts', sub="A == 'a0'", ds=ds)
    assert_less(res0.p_uncorrected.min(), 0.05)
    repr0 = repr(res0)
    assert_in("'uts'", repr0)
    assert_not_in('clusters', repr0)
    assert_not_in('mintime', repr0)

    # sub as array
    res1 = testnd.ttest_1samp('uts', sub=ds.eval("A == 'a0'"), ds=ds)
    repr1 = repr(res1)
    assert_not_equal(repr1, repr0)

    # clusters without resampling
    res1 = testnd.ttest_1samp('uts', sub="A == 'a0'", ds=ds, samples=0,
                              pmin=0.05, tstart=0, tstop=0.6, mintime=0.05)
    assert_equal(res1.clusters.n_cases, 1)
    assert_not_in('p', res1.clusters)
    repr1 = repr(res1)
    assert_in('clusters', repr1)
    assert_in('samples', repr1)
    assert_in('mintime', repr1)

    # persistence
    string = pickle.dumps(res1, pickle.HIGHEST_PROTOCOL)
    res1_ = pickle.loads(string)
    assert_equal(repr(res1_), repr1)
    assert_dataobj_equal(res1.p_uncorrected, res1_.p_uncorrected)

    # clusters with resampling
    res2 = testnd.ttest_1samp('uts', sub="A == 'a0'", ds=ds, samples=10,
                              pmin=0.05, tstart=0, tstop=0.6, mintime=0.05)
    assert_equal(res2.clusters.n_cases, 1)
    assert_equal(res2.samples, 10)
    assert_in('p', res2.clusters)
    repr2 = repr(res2)
    assert_in('samples', repr2)

    # clusters with permutations
    dss = ds.sub("logical_and(A=='a0', B=='b0')")[:8]
    res3 = testnd.ttest_1samp('uts', sub="A == 'a0'", ds=dss, samples=10000,
                              pmin=0.05, tstart=0, tstop=0.6, mintime=0.05)
    assert_equal(res3.clusters.n_cases, 2)
    assert_equal(res3.samples, -1)
    assert_less(res3.clusters['p'].x.min(), 0.05)
    repr3 = repr(res3)
    assert_in('samples', repr3)

    # nd
    dss = ds.sub("A == 'a0'")
    res = testnd.ttest_1samp('utsnd', ds=dss, samples=1)
    res = testnd.ttest_1samp('utsnd', ds=dss, pmin=0.05, samples=1)
    res = testnd.ttest_1samp('utsnd', ds=dss, tfce=True, samples=1)

    # TFCE properties
    res = testnd.ttest_1samp('utsnd', sub="A == 'a0'", ds=ds, samples=1)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res = pickle.loads(string)
    tfce_clusters = res.find_clusters(pmin=0.05)
    peaks = res.find_peaks()
    assert_equal(tfce_clusters.eval("p.min()"), peaks.eval("p.min()"))
    masked = res.masked_parameter_map(pmin=0.05)
    assert_array_equal(masked.abs().x <= res.t.abs().x, True)
Beispiel #23
0
def test_var():
    "Test Var objects"
    base = Factor('aabbcde')

    # initialization
    x = np.arange(4)
    y = Var(x)
    assert_array_equal(y, x)
    y = Var(x, repeat=2)
    assert_array_equal(y, x.repeat(2))
    y = Var(x, repeat=x)
    assert_array_equal(y, x.repeat(x))
    y = Var.from_dict(base, {'a': 5, 'e': 8}, default=0)
    assert_array_equal(y.x, [5, 5, 0, 0, 0, 0, 8])
    assert_raises(TypeError, Var, x, info=1)

    # basic operations
    info = {'a': 1}
    v = Var([1., 2., 3., -4.], 'v', info=info)
    c = 2
    v2 = Var([2., 2., 3., 3.], 'w', info=info)
    eq_(v.info, info)
    for op, iop, desc in OPERATORS:
        target = op(v.x, c)
        vtarget = op(v.x, v2.x)
        # op
        if desc == '+':
            w = v.copy()
            w.x = iop(w.x, c)
        else:
            w = op(v, c)
            eq_(w.info, {'a': 1, 'longname': 'v %s %s' % (desc, c)})
            assert_array_equal(w, target)
            # with Var
            w = op(v, v2)
            eq_(w.info, {'a': 1, 'longname': 'v %s w' % desc})
            assert_array_equal(w, vtarget)
        # i-op
        w = v.copy()
        w = iop(w, c)
        assert_array_equal(w, target)
        # i-op with Var
        w = v.copy()
        w = iop(w, v2)
        assert_array_equal(w, vtarget)

    # methods
    w = v.abs()
    eq_(w.info, {'a': 1, 'longname': 'abs(v)'})
    assert_array_equal(w, np.abs(v.x))
    x = w.log()
    eq_(x.info, {'a': 1, 'longname': 'log(abs(v))'})
    assert_array_equal(x, np.log(w.x))

    # assignment
    tgt1 = np.arange(10)
    tgt2 = np.tile(np.arange(5), 2)
    v = Var(np.arange(10))
    v[v > 4] = np.arange(5)
    assert_array_equal(v, tgt2)
    v[5:] = np.arange(5, 10)
    assert_array_equal(v, tgt1)
    v = Var(np.arange(10))
    v[v > 4] = Var(np.arange(5))
    assert_array_equal(v, tgt2)
    v[5:] = Var(np.arange(5, 10))
    assert_array_equal(v, tgt1)

    # .count()
    v = Var([1., 2., 1.11, 2., 1.11, 4.])
    assert_array_equal(v.count(), [0, 0, 0, 1, 1, 0])

    # .split()
    y = Var(np.arange(16))
    for i in xrange(1, 9):
        split = y.split(i)
        eq_(len(split.cells), i)

    # .as_factor()
    v = Var(np.arange(4))
    assert_dataobj_equal(v.as_factor(), Factor('0123'))
    assert_dataobj_equal(v.as_factor({0: 'a'}), Factor(['a', '', '', '']))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', (2, 3): 'b'}), Factor('aabb'))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', 2: 'b', 'default': 'c'}),
                         Factor('aabc'))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', (2, 'default'): 'b'}),
                         Factor('aabb'))
Beispiel #24
0
def test_ttest_rel():
    "Test testnd.ttest_rel()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_rel('uts',
                           'A%B', ('a1', 'b1'), ('a0', 'b0'),
                           'rm',
                           ds=ds,
                           samples=100)
    eq_(
        repr(res), "<ttest_rel 'uts', 'A x B', ('a1', 'b1'), ('a0', 'b0'), "
        "'rm' (n=15), samples=100, p=.000>")

    # alternate argspec
    ds1 = Dataset()
    ds1['a1b1'] = ds.eval("uts[A%B == ('a1', 'b1')]")
    ds1['a0b0'] = ds.eval("uts[A%B == ('a0', 'b0')]")
    res1 = testnd.ttest_rel('a1b1', 'a0b0', ds=ds1, samples=100)
    assert_dataobj_equal(res1.t, res.t)
    eq_(repr(res1), "<ttest_rel 'a1b1', 'a0b0' (n=15), samples=100, p=.000>")

    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # collapsing cells
    res2 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_less(res2.p_uncorrected.min(), 0.05)
    assert_equal(res2.n, res.n)

    # reproducibility
    res3 = testnd.ttest_rel('uts',
                            'A%B', ('a1', 'b1'), ('a0', 'b0'),
                            'rm',
                            ds=ds,
                            samples=100)
    assert_dataset_equal(res3.find_clusters(maps=True), res.clusters)
    configure(n_workers=0)
    res4 = testnd.ttest_rel('uts',
                            'A%B', ('a1', 'b1'), ('a0', 'b0'),
                            'rm',
                            ds=ds,
                            samples=100)
    assert_dataset_equal(res4.find_clusters(maps=True), res.clusters)
    configure(n_workers=True)
    sds = ds.sub("B=='b0'")
    # thresholded, UTS
    configure(n_workers=0)
    res0 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    configure(n_workers=True)
    res1 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # thresholded, UTSND
    configure(n_workers=0)
    res0 = testnd.ttest_rel('utsnd',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    configure(n_workers=True)
    res1 = testnd.ttest_rel('utsnd',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # TFCE, UTS
    configure(n_workers=0)
    res0 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            tfce=True,
                            samples=10)
    tgt = res0.compute_probability_map()
    configure(n_workers=True)
    res1 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            tfce=True,
                            samples=10)
    assert_dataobj_equal(res1.compute_probability_map(), tgt)

    # zero variance
    ds['utsnd'].x[:, 1, 10] = 0.
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds)
    eq_(res.t.x[1, 10], 0)
Beispiel #25
0
def test_anova():
    "Test testnd.anova()"
    ds = datasets.get_uts(True)

    testnd.anova('utsnd', 'A*B', ds=ds)
    for samples in (0, 2):
        logging.info("TEST:  samples=%r" % samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, pmin=0.05)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, tfce=True)

    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=0, pmin=0.05)
    repr(res)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=2, pmin=0.05)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))

    # threshold-free
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=10)
    repr(res)
    assert_in('A clusters', res.clusters.info)
    assert_in('B clusters', res.clusters.info)
    assert_in('A x B clusters', res.clusters.info)

    # no clusters
    res = testnd.anova('uts', 'B', sub="A=='a1'", ds=ds, samples=5, pmin=0.05,
                       mintime=0.02)
    repr(res)
    assert_in('v', res.clusters)
    assert_in('p', res.clusters)

    # all effects with clusters
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5, pmin=0.05,
                       tstart=0.1, mintime=0.02)
    assert_equal(set(res.clusters['effect'].cells), set(res.effects))

    # some effects with clusters, some without
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5, pmin=0.05,
                       tstart=0.37, mintime=0.02)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_dataobj_equal(res.clusters, res_.clusters)

    # test multi-effect results (with persistence)
    # UTS
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5)
    repr(res)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    resr = pickle.loads(string)
    tf_clusters = resr.find_clusters(pmin=0.05)
    peaks = resr.find_peaks()
    assert_dataobj_equal(tf_clusters, res.find_clusters(pmin=0.05))
    assert_dataobj_equal(peaks, res.find_peaks())
    assert_equal(tf_clusters.eval("p.min()"), peaks.eval("p.min()"))
    unmasked = resr.f[0]
    masked = resr.masked_parameter_map(effect=0, pmin=0.05)
    assert_array_equal(masked.x <= unmasked.x, True)

    # reproducibility
    res0 = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    testnd.configure(0)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    testnd.configure(-1)

    # permutation
    eelbrain._stats.permutation._YIELD_ORIGINAL = 1
    samples = 4
    # raw
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.parameter_map.abs().max())
    # TFCE
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, tfce=True, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.tfce_map.abs().max())
    # thresholded
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=samples)
    clusters = res.find_clusters()
    for dist, effect in izip(res._cdist, res.effects):
        effect_idx = clusters.eval("effect == %r" % effect)
        vmax = clusters[effect_idx, 'v'].abs().max()
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, vmax)
    eelbrain._stats.permutation._YIELD_ORIGINAL = 0

    # 1d TFCE
    testnd.configure(0)
    res = testnd.anova('utsnd.rms(time=(0.1, 0.3))', 'A*B*rm', ds=ds, tfce=True, samples=samples)
    testnd.configure(-1)
Beispiel #26
0
def test_clusterdist():
    "Test _ClusterDist class"
    shape = (10, 6, 6, 4)
    locs = [[0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0]]
    x = np.random.normal(0, 1, shape)
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 6), Ordered('dim2', range(6), 'unit'),
            sensor)
    y = NDVar(x, dims)

    # test connecting sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, :2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    print(repr(cdist))
    cdist.add_original(pmap)
    print(repr(cdist))
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))
    assert_equal(cdist.parameter_map.dims, y.dims[1:])

    # test connecting many sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))

    # test keeping sensors separate
    logging.info("TEST:  keeping sensors separate")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, 0] = True
    bin_map[:3, :3, 2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 1, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 2)

    # criteria
    ds = datasets.get_uts(True)
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05)
    assert_less(res.clusters['duration'].min(), 0.01)
    eq_(res.clusters['n_sensors'].min(), 1)
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05,
                           mintime=0.02, minsensor=2)
    assert_greater_equal(res.clusters['duration'].min(), 0.02)
    eq_(res.clusters['n_sensors'].min(), 2)

    # 1d
    res1d = testnd.ttest_rel('utsnd.sub(time=0.1)', 'A', match='rm', ds=ds,
                             samples=0, pmin=0.05)
    assert_dataobj_equal(res1d.p_uncorrected, res.p_uncorrected.sub(time=0.1))

    # TFCE
    logging.info("TEST:  TFCE")
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 4), sensor,
            Ordered('dim2', range(10), 'unit'))
    y = NDVar(np.random.normal(0, 1, (10, 4, 4, 10)), dims)
    cdist = _ClusterDist(y, 3, None)
    cdist.add_original(y.x[0])
    cdist.finalize()
    assert_equal(cdist.dist.shape, (3,))
    # I/O
    string = pickle.dumps(cdist, pickle.HIGHEST_PROTOCOL)
    cdist_ = pickle.loads(string)
    assert_equal(repr(cdist_), repr(cdist))
    # find peaks
    x = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [7, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [5, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 7, 5, 5, 0, 0],
                   [0, 0, 0, 0, 5, 4, 4, 4, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 4, 0, 0],
                   [0, 0, 0, 0, 7, 0, 0, 3, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
    tgt = np.equal(x, 7)
    peaks = cdist._find_peaks(x)
    logging.debug(' detected: \n%s' % (peaks.astype(int)))
    logging.debug(' target: \n%s' % (tgt.astype(int)))
    assert_array_equal(peaks, tgt)
Beispiel #27
0
def test_clusterdist():
    "Test _ClusterDist class"
    shape = (10, 6, 6, 4)
    locs = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]]
    x = np.random.normal(0, 1, shape)
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 6), Scalar('dim2', range(6),
                                              'unit'), sensor)
    y = NDVar(x, dims)

    # test connecting sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, :2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    print(repr(cdist))
    cdist.add_original(pmap)
    print(repr(cdist))
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))
    assert_equal(cdist.parameter_map.dims, y.dims[1:])

    # test connecting many sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))

    # test keeping sensors separate
    logging.info("TEST:  keeping sensors separate")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, 0] = True
    bin_map[:3, :3, 2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 1, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 2)

    # criteria
    ds = datasets.get_uts(True)
    res = testnd.ttest_rel('utsnd',
                           'A',
                           match='rm',
                           ds=ds,
                           samples=0,
                           pmin=0.05)
    assert_less(res.clusters['duration'].min(), 0.01)
    eq_(res.clusters['n_sensors'].min(), 1)
    res = testnd.ttest_rel('utsnd',
                           'A',
                           match='rm',
                           ds=ds,
                           samples=0,
                           pmin=0.05,
                           mintime=0.02,
                           minsensor=2)
    assert_greater_equal(res.clusters['duration'].min(), 0.02)
    eq_(res.clusters['n_sensors'].min(), 2)

    # 1d
    res1d = testnd.ttest_rel('utsnd.sub(time=0.1)',
                             'A',
                             match='rm',
                             ds=ds,
                             samples=0,
                             pmin=0.05)
    assert_dataobj_equal(res1d.p_uncorrected, res.p_uncorrected.sub(time=0.1))

    # TFCE
    logging.info("TEST:  TFCE")
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    time = UTS(-0.1, 0.1, 4)
    scalar = Scalar('scalar', range(10), 'unit')
    dims = ('case', time, sensor, scalar)
    np.random.seed(0)
    y = NDVar(np.random.normal(0, 1, (10, 4, 4, 10)), dims)
    cdist = _ClusterDist(y, 3, None)
    cdist.add_original(y.x[0])
    cdist.finalize()
    assert_equal(cdist.dist.shape, (3, ))
    # I/O
    string = pickle.dumps(cdist, pickle.HIGHEST_PROTOCOL)
    cdist_ = pickle.loads(string)
    assert_equal(repr(cdist_), repr(cdist))
    # find peaks
    x = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [7, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [5, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 7, 5, 5, 0, 0],
                   [0, 0, 0, 0, 5, 4, 4, 4, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 4, 0, 0],
                   [0, 0, 0, 0, 7, 0, 0, 3, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
    tgt = np.equal(x, 7)
    peaks = find_peaks(x, cdist._connectivity)
    logging.debug(' detected: \n%s' % (peaks.astype(int)))
    logging.debug(' target: \n%s' % (tgt.astype(int)))
    assert_array_equal(peaks, tgt)
    # testnd permutation result
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    assert_allclose(np.sort(res._cdist.dist),
                    [77.5852307, 119.1976153, 217.6270428])

    # parc with TFCE on unconnected dimension
    configure(False)
    x = np.random.normal(0, 1, (10, 5, 2, 4))
    time = UTS(-0.1, 0.1, 5)
    categorial = Categorial('categorial', ('a', 'b'))
    y = NDVar(x, ('case', time, categorial, sensor))
    y0 = NDVar(x[:, :, 0], ('case', time, sensor))
    y1 = NDVar(x[:, :, 1], ('case', time, sensor))
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    res_parc = testnd.ttest_1samp(y, tfce=True, samples=3, parc='categorial')
    res0 = testnd.ttest_1samp(y0, tfce=True, samples=3)
    res1 = testnd.ttest_1samp(y1, tfce=True, samples=3)
    # cdist
    eq_(res._cdist.shape, (4, 2, 5))
    # T-maps don't depend on connectivity
    assert_array_equal(res.t.x[:, 0], res0.t.x)
    assert_array_equal(res.t.x[:, 1], res1.t.x)
    assert_array_equal(res_parc.t.x[:, 0], res0.t.x)
    assert_array_equal(res_parc.t.x[:, 1], res1.t.x)
    # TFCE-maps should always be the same because they're unconnected
    assert_array_equal(res.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res.tfce_map.x[:, 1], res1.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 1], res1.tfce_map.x)
    # Probability-maps should depend on what is taken into account
    p_a = res0.compute_probability_map().x
    p_b = res1.compute_probability_map().x
    assert_array_equal(res_parc.compute_probability_map(categorial='a').x, p_a)
    assert_array_equal(res_parc.compute_probability_map(categorial='b').x, p_b)
    p_parc = res_parc.compute_probability_map()
    assert_array_equal(p_parc.x, res.compute_probability_map().x)
    ok_(np.all(p_parc.sub(categorial='a').x >= p_a))
    ok_(np.all(p_parc.sub(categorial='b').x >= p_b))
    configure(True)
Beispiel #28
0
def test_ndvar():
    "Test the NDVar class"
    ds = datasets.get_uts(utsnd=True)
    x = ds['utsnd']

    # meaningful slicing
    assert_raises(KeyError, x.sub, sensor='5')
    assert_equal(x.sub(sensor='4'), x.x[:, 4])
    assert_equal(x.sub(sensor=['4', '3', '2']), x.x[:, [4, 3, 2]])
    assert_equal(x.sub(sensor=['4']), x.x[:, [4]])
    assert_equal(x.sub(case=1, sensor='4'), x.x[1, 4])

    # setup indices
    s_case = slice(10, 13)
    s_sensor = slice('2', '4')
    s_time = slice(0.1, 0.2)
    b_case = np.bincount([10, 11, 12], minlength=len(x)).astype(bool)
    b_sensor = np.array([False, False, True, True, False])
    b_time = np.bincount(range(30, 40), minlength=len(x.time)).astype(bool)
    a_case = np.arange(10, 13)
    a_sensor = ['2', '3']
    a_time = np.arange(0.1, 0.2, 0.01)

    # slicing with different index kinds
    tgt = x.x[s_case, 2:4, 30:40]
    eq_(tgt.shape, (3, 2, 10))
    # single
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=b_time), tgt)
    # bool & slice
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=b_time), tgt)
    # bool & array
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=b_time), tgt)
    # slice & array
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=s_time), tgt)
    # all three
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=a_time), tgt)

    # norm
    y = x / x.norm('sensor')
    assert_allclose(y.norm('sensor'), 1.)
    y = ds['uts'].mean('case').norm('time')
    assert_is_instance(y, float)

    # Var
    v_case = Var(b_case)
    assert_equal(x.sub(case=v_case, sensor=b_sensor, time=a_time), tgt)

    # univariate result
    assert_dataobj_equal(x.sub(sensor='2', time=0.1),
                         Var(x.x[:, 2, 30], x.name))
    eq_(x.sub(case=0, sensor='2', time=0.1), x.x[0, 2, 30])

    # baseline correction
    x_bl = x - x.summary(time=(None, 0))
    # assert that the baseline is 0
    bl = x_bl.summary('case', 'sensor', time=(None, 0))
    ok_(abs(bl) < 1e-10, "Baseline correction")

    # NDVar as index
    sens_mean = x.mean(('case', 'time'))
    idx = sens_mean > 0
    pos = sens_mean[idx]
    assert_array_equal(pos.x > 0, True)

    # NDVar as index along one dimension
    x_tc = x.sub(sensor='1')
    x_time = NDVar(x_tc.time.times >= 0.3, dims=(x_tc.time,))
    assert_dataobj_equal(x_tc[x_time], x_tc.sub(time=(0.3, None)))

    # out of range index
    assert_raises(ValueError, x.sub, time=(0.1, 0.81))
    assert_raises(IndexError, x.sub, time=(-0.25, 0.1))

    # iteration
    for i, xi in enumerate(x):
        assert_dataobj_equal(xi, x[i])
        if i > 4:
            break
Beispiel #29
0
def test_sample():
    set_log_level('warning', 'mne')
    # import from file:  http://stackoverflow.com/a/67692/166700
    SampleExperiment = import_attr(sample_path / 'sample_experiment.py', 'SampleExperiment')
    tempdir = TempDir()
    datasets.setup_samples_experiment(tempdir, 3, 2)

    root = join(tempdir, 'SampleExperiment')
    e = SampleExperiment(root)

    eq_(e.get('subject'), 'R0000')
    eq_(e.get('subject', subject='R0002'), 'R0002')

    # events
    e.set('R0001', rej='')
    ds = e.load_selected_events(epoch='target')
    assert ds.n_cases == 39
    ds = e.load_selected_events(epoch='auditory')
    assert ds.n_cases == 20
    ds = e.load_selected_events(epoch='av')
    assert ds.n_cases == 39
    
    # evoked cache invalidated by change in bads
    e.set('R0001', rej='', epoch='target')
    ds = e.load_evoked()
    eq_(ds[0, 'evoked'].info['bads'], [])
    e.make_bad_channels(['MEG 0331'])
    ds = e.load_evoked()
    eq_(ds[0, 'evoked'].info['bads'], ['MEG 0331'])

    e.set(rej='man', model='modality')
    sds = []
    for _ in e:
        e.make_rej(auto=2.5e-12)
        sds.append(e.load_evoked())

    ds = e.load_evoked('all')
    assert_dataobj_equal(combine(sds), ds)

    # test with data parameter
    megs = [e.load_evoked(cat='auditory')['meg'] for _ in e]
    res = e.load_test('a>v', 0.05, 0.2, 0.05, samples=100, data='sensor.rms',
                      sns_baseline=False, make=True)
    meg_rms = combine(meg.rms('sensor') for meg in megs).mean('case', name='auditory')
    assert_dataobj_equal(res.c1_mean, meg_rms, decimal=21)
    res = e.load_test('a>v', 0.05, 0.2, 0.05, samples=100, data='sensor.mean',
                      sns_baseline=False, make=True)
    meg_mean = combine(meg.mean('sensor') for meg in megs).mean('case', name='auditory')
    assert_dataobj_equal(res.c1_mean, meg_mean, decimal=21)

    # e._report_subject_info() broke with non-alphabetic subject order
    subjects = e.get_field_values('subject')
    ds = Dataset()
    ds['subject'] = Factor(reversed(subjects))
    ds['n'] = Var(range(3))
    s_table = e._report_subject_info(ds, '')

    # test multiple epochs with same time stamp
    class Experiment(SampleExperiment):
        epochs = SampleExperiment.epochs.copy()
    Experiment.epochs['v1'] = {'base': 'visual', 'vars': {'shift': 'Var([0.0], repeat=len(side))'}}
    Experiment.epochs['v2'] = {'base': 'visual', 'vars': {'shift': 'Var([0.1], repeat=len(side))'}}
    Experiment.epochs['vc'] = {'sub_epochs': ('v1', 'v2'), 'post_baseline_trigger_shift': 'shift', 'post_baseline_trigger_shift_max': 0.1, 'post_baseline_trigger_shift_min': 0.0}
    e = Experiment(root)
    ds = e.load_epochs(baseline=True, epoch='vc')
    v1 = ds.sub("epoch=='v1'", 'meg').sub(time=(0, 0.199))
    v2 = ds.sub("epoch=='v2'", 'meg').sub(time=(-0.1, 0.099))
    assert_dataobj_equal(v1, v2, decimal=20)

    # duplicate subject
    class BadExperiment(SampleExperiment):
        groups = {'group': ('R0001', 'R0002', 'R0002')}
    assert_raises(DefinitionError, BadExperiment, root)

    # non-existing subject
    class BadExperiment(SampleExperiment):
        groups = {'group': ('R0001', 'R0003', 'R0002')}
    assert_raises(DefinitionError, BadExperiment, root)

    # unsorted subjects
    class Experiment(SampleExperiment):
        groups = {'group': ('R0002', 'R0000', 'R0001')}
    e = Experiment(root)
    eq_([s for s in e], ['R0000', 'R0001', 'R0002'])

    # changes
    class Changed(SampleExperiment):
        variables = {
            'event': {(1, 2, 3, 4): 'target', 5: 'smiley', 32: 'button'},
            'side': {(1, 3): 'left', (2, 4): 'right_changed'},
            'modality': {(1, 2): 'auditory', (3, 4): 'visual'}
        }
        tests = {
            'twostage': {
                'kind': 'two-stage',
                'stage 1': 'side_left + modality_a',
                'vars': {
                    'side_left': "side == 'left'",
                    'modality_a': "modality == 'auditory'",
                }
            },
            'novars': {
                'kind': 'two-stage',
                'stage 1': 'side + modality'
            },
        }
    e = Changed(root)

    # changed variable, while a test with model=None is not changed
    class Changed(Changed):
        variables = {
            'side': {(1, 3): 'left', (2, 4): 'right_changed'},
            'modality': {(1, 2): 'auditory', (3, 4): 'visual_changed'}
        }
    e = Changed(root)

    # changed variable, unchanged test with vardef=None
    class Changed(Changed):
        variables = {
            'side': {(1, 3): 'left', (2, 4): 'right_changed'},
            'modality': {(1, 2): 'auditory', (3, 4): 'visual_changed'}
        }
    e = Changed(root)

    # ICA
    # ---
    e = SampleExperiment(root)
    ica_path = e.make_ica(raw='ica')
    e.set(raw='ica1-40', model='')
    e.make_rej(auto=2e-12, overwrite=True)
    ds1 = e.load_evoked(raw='ica1-40')
    ica = e.load_ica(raw='ica')
    ica.exclude = [0, 1, 2]
    ica.save(ica_path)
    ds2 = e.load_evoked(raw='ica1-40')
    assert not np.allclose(ds1['meg'].x, ds2['meg'].x, atol=1e-20), "ICA change ignored"
Beispiel #30
0
def test_factor():
    "Test basic Factor functionality"
    # initializing
    assert_array_equal(Factor('ab'), ['a', 'b'])
    assert_array_equal(Factor('ab', repeat=2), ['a', 'a', 'b', 'b'])
    assert_array_equal(Factor('ab', repeat=np.array([2, 1])), ['a', 'a', 'b'])
    empty_factor = Factor([])
    eq_(len(empty_factor), 0)
    assert_dataobj_equal(Factor(np.empty(0)), empty_factor)
    # from Factor
    f = Factor('aabbcc')
    assert_array_equal(Factor(f), f)
    assert_array_equal(Factor(f, labels={'a': 'b'}), Factor('bbbbcc'))

    # removing a cell
    f = Factor('aabbcc')
    eq_(f.cells, ('a', 'b', 'c'))
    eq_(f.n_cells, 3)
    f[f == 'c'] = 'a'
    eq_(f.cells, ('a', 'b'))
    eq_(f.n_cells, 2)

    # cell order
    a = np.tile(np.arange(3), 3)
    # alphabetical
    f = Factor(a, labels={0: 'c', 1: 'b', 2: 'a'})
    eq_(f.cells, ('a', 'b', 'c'))
    # ordered
    f = Factor(a, labels=((0, 'c'), (1, 'b'), (2, 'a')))
    eq_(f.cells, ('c', 'b', 'a'))
    eq_(f[:2].cells, ('c', 'b'))
    f[f == 'b'] = 'c'
    eq_(f.cells, ('c', 'a'))

    # label length
    lens = [2, 5, 32, 2, 32, 524]
    f = Factor(['a' * l for l in lens], 'f')
    fl = f.label_length()
    assert_array_equal(fl, lens)
    eq_(fl.info['longname'], 'f.label_length()')
    lens2 = [3, 5, 32, 2, 32, 523]
    f2 = Factor(['b' * l for l in lens2], 'f2')
    assert_array_equal(fl - f2.label_length(), [a - b for a, b in zip(lens, lens2)])

    # equality
    f = Factor('aabbcc')
    assert_equal(f == Factor('aabbcc'), True)
    assert_equal(f == Factor('bbccaa'), False)
    assert_equal(f == Factor('aabxxx'), (True, True, True, False, False, False))
    assert_equal(f == Var(np.ones(6)), False)

    # Factor.as_var()
    assert_array_equal(f.as_var(dict(list(zip('abc', list(range(3)))))), [0, 0, 1, 1, 2, 2])
    assert_array_equal(f.as_var({'a': 1}, 2), [1, 1, 2, 2, 2, 2])
    assert_raises(KeyError, f.as_var, {'a': 1})

    # Factor.floodfill()
    f = Factor([' ', ' ', '1', '2', ' ', ' ', '3', ' ', ' ', '2', ' ', ' ', '1'])
    regions =  [ 1,   1,   1,   2,   2,   2,   3,   3,   3,   2,   2,   1,   1]
    regions2 = [ 1,   1,   1,   2,   2,   3,   3,   2,   2,   2,   2,   1,   1]
    regions3 = [ 1,   1,   1,   1,   1,   1,   1,   1,   2,   2,   2,   2,   2]
    target3 =  ['1', '1', '1', '2', '2', '2', '3', '3', '2', '2', '2', '2', '1']
    target_p = [' ', ' ', '1', '2', '2', '2', '3', '3', '3', '2', '2', '2', '1']
    assert_array_equal(f.floodfill(regions, ' '), Var(regions).as_factor())
    assert_array_equal(f.floodfill(regions2, ' '), Var(regions2).as_factor())
    assert_array_equal(f.floodfill(regions3, ' '), target3)
    assert_array_equal(f.floodfill('previous', ' '), target_p)
    f = Factor(['', '', 'a', '', 'e', 'r', ''])
    assert_array_equal(f.floodfill([1, 1, 1, 11, 11, 11, 11]), Factor('aaaeerr'))
Beispiel #31
0
def test_factor():
    "Test basic Factor functionality"
    # initializing
    assert_array_equal(Factor('ab'), ['a', 'b'])
    assert_array_equal(Factor('ab', repeat=2), ['a', 'a', 'b', 'b'])
    assert_array_equal(Factor('ab', repeat=np.array([2, 1])), ['a', 'a', 'b'])
    empty_factor = Factor([])
    eq_(len(empty_factor), 0)
    assert_dataobj_equal(Factor(np.empty(0)), empty_factor)
    # from Factor
    f = Factor('aabbcc')
    assert_array_equal(Factor(f), f)
    assert_array_equal(Factor(f, labels={'a': 'b'}), Factor('bbbbcc'))

    # removing a cell
    f = Factor('aabbcc')
    eq_(f.cells, ('a', 'b', 'c'))
    eq_(f.n_cells, 3)
    f[f == 'c'] = 'a'
    eq_(f.cells, ('a', 'b'))
    eq_(f.n_cells, 2)

    # cell order
    a = np.tile(np.arange(3), 3)
    # alphabetical
    f = Factor(a, labels={0: 'c', 1: 'b', 2: 'a'})
    eq_(f.cells, ('a', 'b', 'c'))
    # ordered
    f = Factor(a, labels=((0, 'c'), (1, 'b'), (2, 'a')))
    eq_(f.cells, ('c', 'b', 'a'))
    eq_(f[:2].cells, ('c', 'b'))
    f[f == 'b'] = 'c'
    eq_(f.cells, ('c', 'a'))

    # label length
    lens = [2, 5, 32, 2, 32, 524]
    f = Factor(['a' * l for l in lens], 'f')
    fl = f.label_length()
    assert_array_equal(fl, lens)
    eq_(fl.info['longname'], 'f.label_length()')
    lens2 = [3, 5, 32, 2, 32, 523]
    f2 = Factor(['b' * l for l in lens2], 'f2')
    assert_array_equal(fl - f2.label_length(), [a - b for a, b in zip(lens, lens2)])

    # equality
    f = Factor('aabbcc')
    assert_equal(f == Factor('aabbcc'), True)
    assert_equal(f == Factor('bbccaa'), False)
    assert_equal(f == Factor('aabxxx'), (True, True, True, False, False, False))
    assert_equal(f == Var(np.ones(6)), False)

    # Factor.as_var()
    assert_array_equal(f.as_var(dict(zip('abc', range(3)))), [0, 0, 1, 1, 2, 2])
    assert_array_equal(f.as_var({'a': 1}, 2), [1, 1, 2, 2, 2, 2])
    assert_raises(KeyError, f.as_var, {'a': 1})

    # Factor.floodfill()
    f = Factor([' ', ' ', '1', '2', ' ', ' ', '3', ' ', ' ', '2', ' ', ' ', '1'])
    regions =  [ 1,   1,   1,   2,   2,   2,   3,   3,   3,   2,   2,   1,   1]
    regions2 = [ 1,   1,   1,   2,   2,   3,   3,   2,   2,   2,   2,   1,   1]
    regions3 = [ 1,   1,   1,   1,   1,   1,   1,   1,   2,   2,   2,   2,   2]
    target3 =  ['1', '1', '1', '2', '2', '2', '3', '3', '2', '2', '2', '2', '1']
    target_p = [' ', ' ', '1', '2', '2', '2', '3', '3', '3', '2', '2', '2', '1']
    assert_array_equal(f.floodfill(regions, ' '), Var(regions).as_factor())
    assert_array_equal(f.floodfill(regions2, ' '), Var(regions2).as_factor())
    assert_array_equal(f.floodfill(regions3, ' '), target3)
    assert_array_equal(f.floodfill('previous', ' '), target_p)
    f = Factor(['', '', 'a', '', 'e', 'r', ''])
    assert_array_equal(f.floodfill([1, 1, 1, 11, 11, 11, 11]), Factor('aaaeerr'))
Beispiel #32
0
def test_model():
    "Test Model class"
    a = Factor('ab', repeat=3, name='a')
    b = Factor('ab', tile=3, name='b')
    u = Var([1, 1, 1, -1, -1, -1], 'u')
    v = Var([1., 2., 3., 4., 5., 6.], 'v')
    w = Var([1., 0., 0., 1., 1., 0.], 'w')

    # model repr
    m = a * b + v
    eq_(repr(m), "a + b + a % b + v")
    lines = ("intercept   a   b   a x b   v",
             "-----------------------------",
             "1           1   1   1       1",
             "1           1   0   0       2",
             "1           1   1   1       3",
             "1           0   0   0       4",
             "1           0   1   0       5",
             "1           0   0   0       6")
    eq_(str(m), '\n'.join(lines))
    eq_(str(m.head(2)), '\n'.join(lines[:4]))
    eq_(str(m.tail(2)), '\n'.join(lines[:2] + lines[-2:]))

    # model without explicit names
    x1 = Factor('ab', repeat=2)
    x2 = Factor('ab', tile=2)
    m = x1 * x2
    eq_(repr(m), "<?> + <?> + <?> % <?>")

    # catch explicit intercept
    intercept = Factor('i', repeat=4, name='intercept')
    assert_raises(ValueError, a.__mul__, intercept)

    # different var/factor combinations
    eq_(a * b, a + b + a % b)
    eq_(a * v, a + v + a % v)
    eq_(a * (v + w), a + v + w + a % v + a % w)

    # parametrization
    m = v + w + v * w
    p = m._parametrize('dummy')
    eq_(p.column_names, ['intercept', 'v', 'w', 'v * w'])
    assert_array_equal(p.x[:, p.terms['intercept']], 1)
    assert_array_equal(p.x[:, p.terms['v']], v.x[:, None])
    assert_array_equal(p.x[:, p.terms['w']], w.x[:, None])
    assert_array_equal(p.x[:, p.terms['v * w']], (v * w).x[:, None])

    # persistence
    mp = pickle.loads(pickle.dumps(m, pickle.HIGHEST_PROTOCOL))
    assert_array_equal(m.full, mp.full)

    # nested Vars
    m = (v + w) * u
    assert_dataobj_equal(m.effects[2], u)
    assert_dataobj_equal(m.effects[3], v * u)
    assert_dataobj_equal(m.effects[4], w * u)
    m = u * (v + w)
    assert_dataobj_equal(m.effects[0], u)
    assert_dataobj_equal(m.effects[3], u * v)
    assert_dataobj_equal(m.effects[4], u * w)
    m = (v + w) % u
    assert_dataobj_equal(m.effects[0], v * u)
    assert_dataobj_equal(m.effects[1], w * u)
    m = u % (v + w)
    assert_dataobj_equal(m.effects[0], u * v)
    assert_dataobj_equal(m.effects[1], u * w)
Beispiel #33
0
def test_ndvar():
    "Test the NDVar class"
    ds = datasets.get_uts(utsnd=True)
    x = ds['utsnd']

    # meaningful slicing
    assert_raises(KeyError, x.sub, sensor='5')
    assert_equal(x.sub(sensor='4'), x.x[:, 4])
    assert_equal(x.sub(sensor=['4', '3', '2']), x.x[:, [4, 3, 2]])
    assert_equal(x.sub(sensor=['4']), x.x[:, [4]])
    assert_equal(x.sub(case=1, sensor='4'), x.x[1, 4])

    # setup indices
    s_case = slice(10, 13)
    s_sensor = slice(2, 4)
    s_time = x.time._slice(0.1, 0.2)
    b_case = np.zeros(ds.n_cases, dtype=bool)
    b_case[s_case] = True
    b_sensor = np.array([False, False, True, True, False])
    b_time = np.arange(s_time.start, s_time.stop)
    a_case = np.arange(10, 13)
    a_sensor = np.arange(2, 4)
    a_time = np.arange(x.time.dimindex(0.1), x.time.dimindex(0.2))

    # slicing with different index kinds
    tgt = x.x[s_case, s_sensor, s_time]
    eq_(tgt.shape, (3, 2, 10))
    # single
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=b_time), tgt)
    # bool & slice
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=b_time), tgt)
    # bool & array
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=b_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=b_time), tgt)
    # slice & array
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=a_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=s_time), tgt)
    # all three
    assert_equal(x.sub(case=a_case, sensor=b_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=a_case, sensor=s_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=a_sensor, time=s_time), tgt)
    assert_equal(x.sub(case=b_case, sensor=s_sensor, time=a_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=a_sensor, time=b_time), tgt)
    assert_equal(x.sub(case=s_case, sensor=b_sensor, time=a_time), tgt)

    # Var
    v_case = Var(b_case)
    assert_equal(x.sub(case=v_case, sensor=b_sensor, time=a_time), tgt)

    # univariate result
    assert_dataobj_equal(x.sub(sensor=2, time=0.1),
                         Var(x.x[:, 2, a_time[0]], x.name))
    eq_(x.sub(case=0, sensor=2, time=0.1), x.x[0, 2, a_time[0]])

    # baseline correction
    x_bl = x - x.summary(time=(None, 0))
    # assert that the baseline is 0
    bl = x_bl.summary('case', 'sensor', time=(None, 0))
    ok_(abs(bl) < 1e-10, "Baseline correction")

    # NDVar as index
    sens_mean = x.mean(('case', 'time'))
    idx = sens_mean > 0
    pos = sens_mean[idx]
    assert_array_equal(pos.x > 0, True)

    # NDVar as index along one dimension
    x_tc = x.sub(sensor='1')
    x_time = NDVar(x_tc.time.times >= 0.3, dims=(x_tc.time,))
    assert_dataobj_equal(x_tc[x_time], x_tc.sub(time=(0.3, None)))

    # out of range index
    assert_raises(ValueError, x.sub, time=(0.1, 0.81))
    assert_raises(ValueError, x.sub, time=(-0.25, 0.1))
Beispiel #34
0
def test_anova():
    "Test testnd.anova()"
    ds = datasets.get_uts(True)

    testnd.anova('utsnd', 'A*B', ds=ds)
    for samples in (0, 2):
        logging.info("TEST:  samples=%r" % samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, pmin=0.05)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, tfce=True)

    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=0, pmin=0.05)
    eq_(
        repr(res), "<anova 'utsnd', 'A*B*rm', samples=0, pmin=0.05, "
        "'A': 17 clusters, 'B': 20 clusters, 'A x B': 22 clusters>")
    res = testnd.anova('utsnd',
                       'A*B*rm',
                       match='rm',
                       ds=ds,
                       samples=2,
                       pmin=0.05)
    eq_(
        repr(res),
        "<anova 'utsnd', 'A*B*rm', match='rm', samples=2, pmin=0.05, "
        "'A': 17 clusters, p >= 0.000, 'B': 20 clusters, p >= 0.000, "
        "'A x B': 22 clusters, p >= 0.000>")

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))

    # threshold-free
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=10)
    repr(res)
    assert_in('A clusters', res.clusters.info)
    assert_in('B clusters', res.clusters.info)
    assert_in('A x B clusters', res.clusters.info)

    # no clusters
    res = testnd.anova('uts',
                       'B',
                       sub="A=='a1'",
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       mintime=0.02)
    repr(res)
    assert_in('v', res.clusters)
    assert_in('p', res.clusters)

    # all effects with clusters
    res = testnd.anova('uts',
                       'A*B*rm',
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       tstart=0.1,
                       mintime=0.02)
    assert_equal(set(res.clusters['effect'].cells), set(res.effects))

    # some effects with clusters, some without
    res = testnd.anova('uts',
                       'A*B*rm',
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       tstart=0.37,
                       mintime=0.02)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_dataobj_equal(res.clusters, res_.clusters)

    # test multi-effect results (with persistence)
    # UTS
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5)
    repr(res)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    resr = pickle.loads(string)
    tf_clusters = resr.find_clusters(pmin=0.05)
    peaks = resr.find_peaks()
    assert_dataobj_equal(tf_clusters, res.find_clusters(pmin=0.05))
    assert_dataobj_equal(peaks, res.find_peaks())
    assert_equal(tf_clusters.eval("p.min()"), peaks.eval("p.min()"))
    unmasked = resr.f[0]
    masked = resr.masked_parameter_map(effect=0, pmin=0.05)
    assert_array_equal(masked.x <= unmasked.x, True)

    # reproducibility
    res0 = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    configure(n_workers=0)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    configure(n_workers=True)

    # permutation
    eelbrain._stats.permutation._YIELD_ORIGINAL = 1
    samples = 4
    # raw
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.parameter_map.abs().max())
    # TFCE
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, tfce=True, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.tfce_map.abs().max())
    # thresholded
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=samples)
    clusters = res.find_clusters()
    for dist, effect in izip(res._cdist, res.effects):
        effect_idx = clusters.eval("effect == %r" % effect)
        vmax = clusters[effect_idx, 'v'].abs().max()
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, vmax)
    eelbrain._stats.permutation._YIELD_ORIGINAL = 0

    # 1d TFCE
    configure(n_workers=0)
    res = testnd.anova('utsnd.rms(time=(0.1, 0.3))',
                       'A*B*rm',
                       ds=ds,
                       tfce=True,
                       samples=samples)
    configure(n_workers=True)

    # zero variance
    ds['utsnd'].x[:, 1, 10] = 0.
    assert_raises(ZeroVariance, testnd.anova, 'utsnd', 'A', ds=ds)
    assert_raises(ZeroVariance, testnd.anova, 'utsnd', 'A*B*rm', ds=ds)
Beispiel #35
0
def test_celltable():
    "Test the Celltable class."
    ds = datasets.get_uts()
    ds['cat'] = Factor('abcd', repeat=15)

    ct = Celltable('Y', 'A', ds=ds)
    eq_(ct.n_cases, 60)
    eq_(ct.n_cells, 2)

    ct = Celltable('Y', 'A', match='rm', ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.n_cells, 2)

    # cat argument
    ct = Celltable('Y', 'cat', cat=('c', 'b'), ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.X[0], 'c')
    eq_(ct.X[-1], 'b')
    assert_raises(ValueError, Celltable, 'Y', 'cat', cat=('c', 'e'), ds=ds)

    ct = Celltable('Y', 'A', match='rm', ds=ds)
    eq_(ct.n_cases, 30)
    assert np.all(ct.groups['a0'] == ct.groups['a1'])

    ct = Celltable('Y', 'cat', match='rm', cat=('c', 'b'), ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.X[0], 'c')
    eq_(ct.X[-1], 'b')

    # catch unequal length
    assert_raises(ValueError, Celltable, ds['Y', :-1], 'cat', ds=ds)
    assert_raises(ValueError, Celltable, ds['Y', :-1], 'cat', match='rm', ds=ds)

    # coercion of numerical X
    X = ds.eval("A == 'a0'")
    ct = Celltable('Y', X, cat=(None, None), ds=ds)
    eq_(('False', 'True'), ct.cat)
    assert_array_equal(ct.data['True'], ds['Y', X])

    ct = Celltable('Y', X, cat=(True, False), ds=ds)
    eq_(('True', 'False'), ct.cat)
    assert_array_equal(ct.data['True'], ds['Y', X])

    # test coercion of Y
    ct = Celltable(ds['Y'].x, 'A', ds=ds)
    assert_is_instance(ct.Y, np.ndarray)
    ct = Celltable(ds['Y'].x, 'A', ds=ds, coercion=asvar)
    assert_is_instance(ct.Y, Var)

    # test sub
    ds_sub = ds.sub("A == 'a0'")
    ct_sub = Celltable('Y', 'B', ds=ds_sub)
    ct = Celltable('Y', 'B', sub="A == 'a0'", ds=ds)
    assert_dataobj_equal(ct_sub.Y, ct.Y)

    # test sub with rm
    ct_sub = Celltable('Y', 'B', match='rm', ds=ds_sub)
    ct = Celltable('Y', 'B', match='rm', sub="A == 'a0'", ds=ds)
    assert_dataobj_equal(ct_sub.Y, ct.Y)

    # Interaction match
    ct = Celltable('Y', 'A', match='B % rm', ds=ds)
    ok_(ct.all_within)
    assert_dataobj_equal(combine((ct.data['a0'], ct.data['a1'])), ds['Y'])

    # test rm sorting
    ds = Dataset()
    ds['rm'] = Factor('abc', repeat=4)
    ds['Y'] = Var(np.arange(3.).repeat(4))
    ds['X'] = Factor('ab', repeat=2, tile=3)
    idx = np.arange(12)
    np.random.shuffle(idx)
    ds = ds[idx]
    ct = Celltable('Y', 'X', 'rm', ds=ds)
    assert_array_equal(ct.match, Factor('abc', tile=2))
    assert_array_equal(ct.Y, np.tile(np.arange(3.), 2))
    assert_array_equal(ct.X, Factor('ab', repeat=3))
Beispiel #36
0
def test_ttest_1samp():
    "Test testnd.ttest_1samp()"
    ds = datasets.get_uts(True)

    # no clusters
    res0 = testnd.ttest_1samp('uts', sub="A == 'a0'", ds=ds)
    assert_less(res0.p_uncorrected.min(), 0.05)
    repr0 = repr(res0)
    assert_in("'uts'", repr0)
    assert_not_in('clusters', repr0)
    assert_not_in('mintime', repr0)

    # sub as array
    res1 = testnd.ttest_1samp('uts', sub=ds.eval("A == 'a0'"), ds=ds)
    repr1 = repr(res1)
    assert_not_equal(repr1, repr0)

    # clusters without resampling
    res1 = testnd.ttest_1samp('uts',
                              sub="A == 'a0'",
                              ds=ds,
                              samples=0,
                              pmin=0.05,
                              tstart=0,
                              tstop=0.6,
                              mintime=0.05)
    assert_equal(res1.clusters.n_cases, 1)
    assert_not_in('p', res1.clusters)
    repr1 = repr(res1)
    assert_in('clusters', repr1)
    assert_in('samples', repr1)
    assert_in('mintime', repr1)

    # persistence
    string = pickle.dumps(res1, pickle.HIGHEST_PROTOCOL)
    res1_ = pickle.loads(string)
    assert_equal(repr(res1_), repr1)
    assert_dataobj_equal(res1.p_uncorrected, res1_.p_uncorrected)

    # clusters with resampling
    res2 = testnd.ttest_1samp('uts',
                              sub="A == 'a0'",
                              ds=ds,
                              samples=10,
                              pmin=0.05,
                              tstart=0,
                              tstop=0.6,
                              mintime=0.05)
    assert_equal(res2.clusters.n_cases, 1)
    assert_equal(res2.samples, 10)
    assert_in('p', res2.clusters)
    repr2 = repr(res2)
    assert_in('samples', repr2)

    # clusters with permutations
    dss = ds.sub("logical_and(A=='a0', B=='b0')")[:8]
    res3 = testnd.ttest_1samp('uts',
                              sub="A == 'a0'",
                              ds=dss,
                              samples=10000,
                              pmin=0.05,
                              tstart=0,
                              tstop=0.6,
                              mintime=0.05)
    assert_equal(res3.clusters.n_cases, 2)
    assert_equal(res3.samples, -1)
    assert_less(res3.clusters['p'].x.min(), 0.05)
    repr3 = repr(res3)
    assert_in('samples', repr3)

    # nd
    dss = ds.sub("A == 'a0'")
    res = testnd.ttest_1samp('utsnd', ds=dss, samples=1)
    res = testnd.ttest_1samp('utsnd', ds=dss, pmin=0.05, samples=1)
    res = testnd.ttest_1samp('utsnd', ds=dss, tfce=True, samples=1)

    # TFCE properties
    res = testnd.ttest_1samp('utsnd', sub="A == 'a0'", ds=ds, samples=1)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res = pickle.loads(string)
    tfce_clusters = res.find_clusters(pmin=0.05)
    peaks = res.find_peaks()
    assert_equal(tfce_clusters.eval("p.min()"), peaks.eval("p.min()"))
    masked = res.masked_parameter_map(pmin=0.05)
    assert_array_equal(masked.abs().x <= res.t.abs().x, True)

    # zero variance
    ds['utsnd'].x[:, 1, 10] = 0.
    ds['utsnd'].x[:, 2, 10] = 0.1
    res = testnd.ttest_1samp('utsnd', ds=ds)
    eq_(res.t.x[1, 10], 0.)
    assert_greater(res.t.x[2, 10], 1e10)
Beispiel #37
0
def test_celltable():
    "Test the Celltable class."
    ds = datasets.get_uts()
    ds['cat'] = Factor('abcd', repeat=15)

    ct = Celltable('Y', 'A', ds=ds)
    eq_(ct.n_cases, 60)
    eq_(ct.n_cells, 2)
    eq_(repr(ct), "Celltable(Y, A)")
    eq_(repr(Celltable(ds['Y'].x, 'A', ds=ds)), "Celltable(<ndarray>, A)")
    eq_(repr(Celltable(ds['Y'].x, ds['A'].x, ds=ds)),
        "Celltable(<ndarray>, <Factor>)")

    ct = Celltable('Y', 'A', match='rm', ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.n_cells, 2)

    # cat argument
    ct = Celltable('Y', 'cat', cat=('c', 'b'), ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.X[0], 'c')
    eq_(ct.X[-1], 'b')
    assert_raises(ValueError, Celltable, 'Y', 'cat', cat=('c', 'e'), ds=ds)

    ct = Celltable('Y', 'A', match='rm', ds=ds)
    eq_(ct.n_cases, 30)
    assert np.all(ct.groups['a0'] == ct.groups['a1'])

    ct = Celltable('Y', 'cat', match='rm', cat=('c', 'b'), ds=ds)
    eq_(ct.n_cases, 30)
    eq_(ct.X[0], 'c')
    eq_(ct.X[-1], 'b')

    # catch unequal length
    assert_raises(ValueError, Celltable, ds['Y', :-1], 'cat', ds=ds)
    assert_raises(ValueError, Celltable, ds['Y', :-1], 'cat', match='rm', ds=ds)

    # coercion of numerical X
    X = ds.eval("A == 'a0'")
    ct = Celltable('Y', X, cat=(None, None), ds=ds)
    eq_(('False', 'True'), ct.cat)
    assert_array_equal(ct.data['True'], ds['Y', X])

    ct = Celltable('Y', X, cat=('True', 'False'), ds=ds)
    eq_(('True', 'False'), ct.cat)
    assert_array_equal(ct.data['True'], ds['Y', X])

    # test coercion of Y
    ct = Celltable(ds['Y'].x, 'A', ds=ds)
    assert_is_instance(ct.Y, np.ndarray)
    ct = Celltable(ds['Y'].x, 'A', ds=ds, coercion=asvar)
    assert_is_instance(ct.Y, Var)

    # test sub
    ds_sub = ds.sub("A == 'a0'")
    ct_sub = Celltable('Y', 'B', ds=ds_sub)
    ct = Celltable('Y', 'B', sub="A == 'a0'", ds=ds)
    assert_dataobj_equal(ct_sub.Y, ct.Y)

    # test sub with rm
    ct_sub = Celltable('Y', 'B', match='rm', ds=ds_sub)
    ct = Celltable('Y', 'B', match='rm', sub="A == 'a0'", ds=ds)
    assert_dataobj_equal(ct_sub.Y, ct.Y)

    # Interaction match
    ct = Celltable('Y', 'A', match='B % rm', ds=ds)
    ok_(ct.all_within)
    assert_dataobj_equal(combine((ct.data['a0'], ct.data['a1'])), ds['Y'])

    # test rm sorting
    ds = Dataset()
    ds['rm'] = Factor('abc', repeat=4)
    ds['Y'] = Var(np.arange(3.).repeat(4))
    ds['X'] = Factor('ab', repeat=2, tile=3)
    idx = np.arange(12)
    np.random.shuffle(idx)
    ds = ds[idx]
    ct = Celltable('Y', 'X', 'rm', ds=ds)
    assert_array_equal(ct.match, Factor('abc', tile=2))
    assert_array_equal(ct.Y, np.tile(np.arange(3.), 2))
    assert_array_equal(ct.X, Factor('ab', repeat=3))
Beispiel #38
0
def test_var():
    "Test Var objects"
    base = Factor('aabbcde')

    # initialization
    x = np.arange(4)
    y = Var(x)
    assert_array_equal(y, x)
    y = Var(x, repeat=2)
    assert_array_equal(y, x.repeat(2))
    y = Var(x, repeat=x)
    assert_array_equal(y, x.repeat(x))
    y = Var.from_dict(base, {'a': 5, 'e': 8}, default=0)
    assert_array_equal(y.x, [5, 5, 0, 0, 0, 0, 8])
    assert_raises(TypeError, Var, x, info=1)

    # basic operations
    info = {'a': 1}
    v = Var([1., 2., 3., -4.], 'v', info=info)
    c = 2
    v2 = Var([2., 2., 3., 3.], 'w', info=info)
    eq_(v.info, info)
    for op, iop, desc in OPERATORS:
        target = op(v.x, c)
        vtarget = op(v.x, v2.x)
        # op
        if desc == '+':
            w = v.copy()
            w.x = iop(w.x, c)
        else:
            w = op(v, c)
            eq_(w.info, {'a': 1, 'longname': 'v %s %s' % (desc, c)})
            assert_array_equal(w, target)
            # with Var
            w = op(v, v2)
            eq_(w.info, {'a': 1, 'longname': 'v %s w' % desc})
            assert_array_equal(w, vtarget)
        # i-op
        w = v.copy()
        w = iop(w, c)
        assert_array_equal(w, target)
        # i-op with Var
        w = v.copy()
        w = iop(w, v2)
        assert_array_equal(w, vtarget)

    # methods
    w = v.abs()
    eq_(w.info, {'a': 1, 'longname': 'abs(v)'})
    assert_array_equal(w, np.abs(v.x))
    x = w.log()
    eq_(x.info, {'a': 1, 'longname': 'log(abs(v))'})
    assert_array_equal(x, np.log(w.x))

    # assignment
    tgt1 = np.arange(10)
    tgt2 = np.tile(np.arange(5), 2)
    v = Var(np.arange(10))
    v[v > 4] = np.arange(5)
    assert_array_equal(v, tgt2)
    v[5:] = np.arange(5, 10)
    assert_array_equal(v, tgt1)
    v = Var(np.arange(10))
    v[v > 4] = Var(np.arange(5))
    assert_array_equal(v, tgt2)
    v[5:] = Var(np.arange(5, 10))
    assert_array_equal(v, tgt1)

    # .count()
    v = Var([1., 2., 1.11, 2., 1.11, 4.])
    assert_array_equal(v.count(), [0, 0, 0, 1, 1, 0])

    # .split()
    y = Var(np.arange(16))
    for i in range(1, 9):
        split = y.split(i)
        eq_(len(split.cells), i)

    # .as_factor()
    v = Var(np.arange(4))
    assert_dataobj_equal(v.as_factor(), Factor('0123'))
    assert_dataobj_equal(v.as_factor({0: 'a'}), Factor(['a', '', '', '']))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', (2, 3): 'b'}), Factor('aabb'))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', 2: 'b', 'default': 'c'}),
                         Factor('aabc'))
    assert_dataobj_equal(v.as_factor({(0, 1): 'a', (2, 'default'): 'b'}),
                         Factor('aabb'))
Beispiel #39
0
def test_clusterdist():
    "Test _ClusterDist class"
    shape = (10, 6, 6, 4)
    locs = [[0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0]]
    x = np.random.normal(0, 1, shape)
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 6), Ordered('dim2', list(range(6)), 'unit'),
            sensor)
    y = NDVar(x, dims)

    # test connecting sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, :2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    print(repr(cdist))
    cdist.add_original(pmap)
    print(repr(cdist))
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))
    assert_equal(cdist.parameter_map.dims, y.dims[1:])

    # test connecting many sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))

    # test keeping sensors separate
    logging.info("TEST:  keeping sensors separate")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, 0] = True
    bin_map[:3, :3, 2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 1, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 2)

    # criteria
    ds = datasets.get_uts(True)
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05)
    assert_less(res.clusters['duration'].min(), 0.01)
    eq_(res.clusters['n_sensors'].min(), 1)
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05,
                           mintime=0.02, minsensor=2)
    assert_greater_equal(res.clusters['duration'].min(), 0.02)
    eq_(res.clusters['n_sensors'].min(), 2)

    # 1d
    res1d = testnd.ttest_rel('utsnd.sub(time=0.1)', 'A', match='rm', ds=ds,
                             samples=0, pmin=0.05)
    assert_dataobj_equal(res1d.p_uncorrected, res.p_uncorrected.sub(time=0.1))

    # TFCE
    logging.info("TEST:  TFCE")
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 4), sensor,
            Ordered('dim2', list(range(10)), 'unit'))
    y = NDVar(np.random.normal(0, 1, (10, 4, 4, 10)), dims)
    cdist = _ClusterDist(y, 3, None)
    cdist.add_original(y.x[0])
    cdist.finalize()
    assert_equal(cdist.dist.shape, (3,))
    # I/O
    string = pickle.dumps(cdist, pickle.HIGHEST_PROTOCOL)
    cdist_ = pickle.loads(string)
    assert_equal(repr(cdist_), repr(cdist))
    # find peaks
    x = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [7, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [5, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 7, 5, 5, 0, 0],
                   [0, 0, 0, 0, 5, 4, 4, 4, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 4, 0, 0],
                   [0, 0, 0, 0, 7, 0, 0, 3, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
    tgt = np.equal(x, 7)
    peaks = cdist._find_peaks(x)
    logging.debug(' detected: \n%s' % (peaks.astype(int)))
    logging.debug(' target: \n%s' % (tgt.astype(int)))
    assert_array_equal(peaks, tgt)