Beispiel #1
0
def create_rsv_acopf_model(model_data,
                           include_feasibility_slack=False,
                           pw_cost_model='delta'):
    model, md = _create_base_power_ac_model(
        model_data,
        include_feasibility_slack=include_feasibility_slack,
        pw_cost_model=pw_cost_model)
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus'])
    unique_bus_pairs = list(
        OrderedDict((val, None) for idx, val in bus_pairs.items()).keys())

    # declare the rectangular voltages
    neg_v_max = map_items(op.neg, bus_attrs['v_max'])
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k]))
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vr(model,
                          bus_attrs['names'],
                          initialize=vr_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k]))
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vj(model,
                          bus_attrs['names'],
                          initialize=vj_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    # fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        libbus.declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus)
    else:
        model.vj[ref_bus].fix(0.0)
        model.vr[ref_bus].setlb(bus_attrs['v_min'][ref_bus])

    # relate c, s, and vmsq to vm and va
    libbus.declare_eq_vmsq(model=model,
                           index_set=bus_attrs['names'],
                           coordinate_type=CoordinateType.RECTANGULAR)
    libbranch.declare_eq_c(model=model,
                           index_set=unique_bus_pairs,
                           coordinate_type=CoordinateType.RECTANGULAR)
    libbranch.declare_eq_s(model=model,
                           index_set=unique_bus_pairs,
                           coordinate_type=CoordinateType.RECTANGULAR)

    return model, md
Beispiel #2
0
def create_riv_acopf_model(model_data, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads)
    model.pl.fix()
    model.ql.fix()

    ### declare the fixed shunts at the buses
    bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(
        buses, shunts)

    ### declare the rectangular voltages
    neg_v_max = map_items(op.neg, bus_attrs['v_max'])
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vr(model,
                          bus_attrs['names'],
                          initialize=vr_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vj(model,
                          bus_attrs['names'],
                          initialize=vj_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    q_rhs_kwargs = {}
    if include_feasibility_slack:
        p_marginal_slack_penalty, q_marginal_slack_penalty = _validate_and_extract_slack_penalties(
            md)
        p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(
            model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads,
            p_marginal_slack_penalty, q_marginal_slack_penalty)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        libbus.declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus)
    else:
        model.vj[ref_bus].fix(0.0)
        model.vr[ref_bus].setlb(0.0)

    ### declare the generator real and reactive power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    qg_init = {
        k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0
        for k in gen_attrs['qg']
    }
    libgen.declare_var_qg(model,
                          gen_attrs['names'],
                          initialize=qg_init,
                          bounds=zip_items(gen_attrs['q_min'],
                                           gen_attrs['q_max']))

    ### declare the current flows in the branches
    branch_currents = tx_utils.dict_of_branch_currents(branches, buses)
    s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    if_bounds = dict()
    it_bounds = dict()
    ifr_init = dict()
    ifj_init = dict()
    itr_init = dict()
    itj_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init[branch_name] = tx_calc.calculate_ifr(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        ifj_init[branch_name] = tx_calc.calculate_ifj(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        itr_init[branch_name] = tx_calc.calculate_itr(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        itj_init[branch_name] = tx_calc.calculate_itj(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        if s_max[branch_name] is None:
            if_bounds[branch_name] = (None, None)
            it_bounds[branch_name] = (None, None)
        else:
            if_max = s_max[branch_name] / buses[branches[branch_name]
                                                ['from_bus']]['v_min']
            it_max = s_max[branch_name] / buses[branches[branch_name]
                                                ['to_bus']]['v_min']
            if_bounds[branch_name] = (-if_max, if_max)
            it_bounds[branch_name] = (-it_max, it_max)

    libbranch.declare_var_ifr(model=model,
                              index_set=branch_attrs['names'],
                              initialize=ifr_init,
                              bounds=if_bounds)
    libbranch.declare_var_ifj(model=model,
                              index_set=branch_attrs['names'],
                              initialize=ifj_init,
                              bounds=if_bounds)
    libbranch.declare_var_itr(model=model,
                              index_set=branch_attrs['names'],
                              initialize=itr_init,
                              bounds=it_bounds)
    libbranch.declare_var_itj(model=model,
                              index_set=branch_attrs['names'],
                              initialize=itj_init,
                              bounds=it_bounds)

    ir_init = dict()
    ij_init = dict()
    for bus_name, bus in buses.items():
        ir_expr = sum([
            ifr_init[branch_name]
            for branch_name in outlet_branches_by_bus[bus_name]
        ])
        ir_expr += sum([
            itr_init[branch_name]
            for branch_name in inlet_branches_by_bus[bus_name]
        ])
        ij_expr = sum([
            ifj_init[branch_name]
            for branch_name in outlet_branches_by_bus[bus_name]
        ])
        ij_expr += sum([
            itj_init[branch_name]
            for branch_name in inlet_branches_by_bus[bus_name]
        ])

        if bus_gs_fixed_shunts[bus_name] != 0.0:
            ir_expr += bus_gs_fixed_shunts[bus_name] * vr_init[bus_name]
            ij_expr += bus_gs_fixed_shunts[bus_name] * vj_init[bus_name]
        if bus_bs_fixed_shunts[bus_name] != 0.0:
            ir_expr += bus_bs_fixed_shunts[bus_name] * vj_init[bus_name]
            ij_expr += bus_bs_fixed_shunts[bus_name] * vr_init[bus_name]

        ir_init[bus_name] = ir_expr
        ij_init[bus_name] = ij_expr

    # TODO: Implement better bounds (?) for these aggregated variables -- note, these are unbounded in old Egret
    libbus.declare_var_ir_aggregation_at_bus(model=model,
                                             index_set=bus_attrs['names'],
                                             initialize=ir_init,
                                             bounds=(None, None))
    libbus.declare_var_ij_aggregation_at_bus(model=model,
                                             index_set=bus_attrs['names'],
                                             initialize=ij_init,
                                             bounds=(None, None))

    ### declare the branch current flow constraints
    libbranch.declare_eq_branch_current(model=model,
                                        index_set=branch_attrs['names'],
                                        branches=branches)

    ### declare the ir/ij_aggregation constraints
    libbus.declare_eq_i_aggregation_at_bus(
        model=model,
        index_set=bus_attrs['names'],
        bus_bs_fixed_shunts=bus_bs_fixed_shunts,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus)

    ### declare the pq balances
    libbus.declare_eq_p_balance_with_i_aggregation(
        model=model,
        index_set=bus_attrs['names'],
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        **p_rhs_kwargs)

    libbus.declare_eq_q_balance_with_i_aggregation(
        model=model,
        index_set=bus_attrs['names'],
        bus_q_loads=bus_q_loads,
        gens_by_bus=gens_by_bus,
        **q_rhs_kwargs)

    ### declare the thermal limits
    libbranch.declare_ineq_s_branch_thermal_limit(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        s_thermal_limits=s_max,
        flow_type=FlowType.CURRENT)

    ### declare the voltage min and max inequalities
    libbus.declare_ineq_vm_bus_lbub(model=model,
                                    index_set=bus_attrs['names'],
                                    buses=buses,
                                    coordinate_type=CoordinateType.RECTANGULAR)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'],
                                                  q_costs=gen_attrs.get(
                                                      'q_cost', None))

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr
    if hasattr(model, 'qg_operating_cost'):
        obj_expr += sum(model.qg_operating_cost[gen_name]
                        for gen_name in model.qg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
Beispiel #3
0
def create_rsv_acopf_model(model_data, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads)
    model.pl.fix()
    model.ql.fix()

    ### declare the fixed shunts at the buses
    bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(
        buses, shunts)

    ### declare the rectangular voltages
    neg_v_max = map_items(op.neg, bus_attrs['v_max'])
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vr(model,
                          bus_attrs['names'],
                          initialize=vr_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vj(model,
                          bus_attrs['names'],
                          initialize=vj_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    libbus.declare_expr_vmsq(model=model,
                             index_set=bus_attrs['names'],
                             coordinate_type=CoordinateType.RECTANGULAR)

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    q_rhs_kwargs = {}
    if include_feasibility_slack:
        p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(
            model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        libbus.declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus)
    else:
        model.vj[ref_bus].fix(0.0)
        model.vr[ref_bus].setlb(0.0)

    ### declare the generator real and reactive power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    qg_init = {
        k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0
        for k in gen_attrs['qg']
    }
    libgen.declare_var_qg(model,
                          gen_attrs['names'],
                          initialize=qg_init,
                          bounds=zip_items(gen_attrs['q_min'],
                                           gen_attrs['q_max']))

    ### declare the current flows in the branches
    s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    s_lbub = dict()
    for k in branches.keys():
        if s_max[k] is None:
            s_lbub[k] = (None, None)
        else:
            s_lbub[k] = (-s_max[k], s_max[k])
    pf_bounds = s_lbub
    pt_bounds = s_lbub
    qf_bounds = s_lbub
    qt_bounds = s_lbub
    pf_init = dict()
    pt_init = dict()
    qf_init = dict()
    qt_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])
        qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)
    libbranch.declare_var_pt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pt_init,
                             bounds=pt_bounds)
    libbranch.declare_var_qf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qf_init,
                             bounds=qf_bounds)
    libbranch.declare_var_qt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qt_init,
                             bounds=qt_bounds)

    ### declare the branch power flow constraints
    bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus'])
    unique_bus_pairs = list(
        OrderedDict((val, None) for idx, val in bus_pairs.items()).keys())
    libbranch.declare_expr_c(model=model,
                             index_set=unique_bus_pairs,
                             coordinate_type=CoordinateType.RECTANGULAR)
    libbranch.declare_expr_s(model=model,
                             index_set=unique_bus_pairs,
                             coordinate_type=CoordinateType.RECTANGULAR)
    libbranch.declare_eq_branch_power(model=model,
                                      index_set=branch_attrs['names'],
                                      branches=branches)

    ### declare the pq balances
    libbus.declare_eq_p_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_p_loads=bus_p_loads,
                                gens_by_bus=gens_by_bus,
                                bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                **p_rhs_kwargs)

    libbus.declare_eq_q_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_q_loads=bus_q_loads,
                                gens_by_bus=gens_by_bus,
                                bus_bs_fixed_shunts=bus_bs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                **q_rhs_kwargs)

    ### declare the thermal limits
    libbranch.declare_ineq_s_branch_thermal_limit(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        s_thermal_limits=s_max,
        flow_type=FlowType.POWER)

    ### declare the voltage min and max inequalities
    libbus.declare_ineq_vm_bus_lbub(model=model,
                                    index_set=bus_attrs['names'],
                                    buses=buses,
                                    coordinate_type=CoordinateType.RECTANGULAR)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'],
                                                  q_costs=gen_attrs.get(
                                                      'q_cost', None))

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr
    if hasattr(model, 'qg_operating_cost'):
        obj_expr += sum(model.qg_operating_cost[gen_name]
                        for gen_name in model.qg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model, md